Mortality: The challenges of estimating biological age
To see if treatments to ward off aging work, first we need a way to measure biological age reliably (Moskalev, 2019). Biological age is a complex parameter involving the calendar age of a person, their health as relating to their age, and medical signs of when they might die of old age. Historically, the first estimates of biological age were based on markers that could be measured in the clinic (such as inflammation, glucose resistance, and endocrine markers) and on functional tests (such as cognitive function and cardiorespiratory fitness; reviewed in Jia et al., 2017). Such markers have a direct clinical interpretation, but even if they predict mortality better than passport age, it is unclear to what extent they measure biological aging itself, rather than health deterioration for other reasons. Additionally, these markers often only work well as averaged indicators in very large samples, and vary a lot between individuals. However, it may be possible to overcome these limitations by using artificial intelligence to generate models using several aging biomarkers (Zhavoronkov et al., 2019).
Other approaches, based on a deeper understanding of the molecular and cellular causes of aging, include measuring the levels of p16 (a marker for cellular senescence or when a cell stops dividing) and measuring the telomere length in leukocytes (biological age increases as telomere length decreases; Waaijer et al., 2012; Epel et al., 2009). Theoretically, these markers should be more sensitive to early signs of aging (as opposed to mortality and frailty) but, similar to clinical markers for individual patients, they lack robustness and reproducibility. This is because aging is a multi-level process, so markers of individual mechanisms cannot cover all its aspects.
A third approach is to use ‘omics’ (that is, to analyze the transcriptome, methylome, proteome and metabolome). Changes in the ‘omes’ are the result of changes in the organism at different levels, making them a useful way to approach the complexity of the aging process. Using this approach, there is no single biological age, but rather a metabolic, proteomic or methylome age. Multi-omics approaches have also been used to assess the rate of aging (Solovev et al., 2020).
Within omics, analyses of DNA methylation or epigenetic clocks are the most robust indicator of age-related changes and have become a booming area of research (Bell et al., 2019). But questions still remain. To what extent are epigenetic clocks a function of age, and to what extent part of biological aging? How does the epigenome change with age? How closely are epigenetic clocks associated with mortality? Is it possible to reverse the epigenetic age, for example through lifestyle changes or interventions? Diet, exercise, education and lifestyle factors seem to be able to influence the rate of aging according to the epigenetic clock (Quach et al., 2017; Gensous et al., 2019; Sae-Lee et al., 2018). Certain drugs can slow down the epigenetic clock in cells cultured in the lab (Horvath et al., 2019) and certain treatments have also proved to be effective in vivo (Chen et al., 2019; Fahy et al., 2019).
Now, in eLife, Sara Hägg from the Karolinska Institute and colleagues from the University of California Riverside, Indiana University Southeast and Jönköping University – with Xia Li as first author – study how nine different methods to estimate biological age change over time in a cohort of 845 middle-aged and older individuals from Sweden who were studied over a period of 20 years (Li et al., 2020). Three of the biological ages measured were functional (cognitive function, functional aging index, and frailty index) and four were based on the levels of DNA methylation (called Horvath, Hannum, PhenoAge and GrimAge). The other two were telomere length (measured by qPCR) and physiological age (calculated as a composite score of clinical measurements such as body-mass index or waist circumference, and blood biomarkers such as hemoglobin or cholesterol).
This study is unique because it compares several approaches at once and evaluates how the measurements change over time: functional data and biological samples were collected nine times between 1986 and 2014. The profiles for the three functional measurements indicated that accelerated aging started around the age of 70, whereas the other biological ages showed linear growth with time.
The authors found sex differences in the mean levels of the different biological ages. Women exhibited longer telomere length and lower DNA methylation age compared to men, but also averaged higher in two of the three functional estimates. Telomere length showed the weakest correlations with both chronological age and with the other measurements. The highest correlations were between two of the DNA methylation ages (Horvath and Hannum), and between the functional aging index and the other two functional biological ages. Regarding the ability of biological ages to predict age-related mortality, one of the functional estimates (frailty index) and one of the methylation clocks (GrimAge) were the best predictors, while telomere length was the worst.
These results indicate that methylation age and frailty index are the most promising approaches to estimating biological age, and underline the value of assessing these estimates overtime in the same population.
References
-
The impact of caloric restriction on the epigenetic signatures of agingInternational Journal of Molecular Sciences 20:2022.https://doi.org/10.3390/ijms20082022
-
Common methods of biological age estimationClinical Interventions in Aging 12:759–772.https://doi.org/10.2147/CIA.S134921
-
BookIntroductionIn: Moskalev A, editors. Biomarkers of Human Aging. Cham: Springer International Publishing. pp. 1–4.https://doi.org/10.1007/978-3-030-24970-0_1
-
Dietary intervention modifies DNA methylation age assessed by the epigenetic clockMolecular Nutrition & Food Research 62:e1800092.https://doi.org/10.1002/mnfr.201800092
-
Multi-omics approaches to human biological age estimationMechanisms of Ageing and Development 185:111192.https://doi.org/10.1016/j.mad.2019.111192
Article and author information
Author details
Publication history
- Version of Record published: February 11, 2020 (version 1)
Copyright
© 2020, Moskalev
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,894
- Page views
-
- 325
- Downloads
-
- 14
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
Background:
Affectionate touch, which is vital for mental and physical health, was restricted during the Covid-19 pandemic. This study investigated the association between momentary affectionate touch and subjective well-being, as well as salivary oxytocin and cortisol in everyday life during the pandemic.
Methods:
In the first step, we measured anxiety and depression symptoms, loneliness and attitudes toward social touch in a large cross-sectional online survey (N = 1050). From this sample, N = 247 participants completed ecological momentary assessments over 2 days with six daily assessments by answering smartphone-based questions on affectionate touch and momentary mental state, and providing concomitant saliva samples for cortisol and oxytocin assessment.
Results:
Multilevel models showed that on a within-person level, affectionate touch was associated with decreased self-reported anxiety, general burden, stress, and increased oxytocin levels. On a between-person level, affectionate touch was associated with decreased cortisol levels and higher happiness. Moreover, individuals with a positive attitude toward social touch experiencing loneliness reported more mental health problems.
Conclusions:
Our results suggest that affectionate touch is linked to higher endogenous oxytocin in times of pandemic and lockdown and might buffer stress on a subjective and hormonal level. These findings might have implications for preventing mental burden during social contact restrictions.
Funding:
The study was funded by the German Research Foundation, the German Psychological Society, and German Academic Exchange Service.
-
- Epidemiology and Global Health
Background: Home-based self-sampling for human papillomavirus (HPV) testing may be an alternative for women not attending clinic-based cervical cancer screening.
Methods: We assessed barriers to care and motivators to use at-home HPV self-sampling kits during the COVID-19 pandemic as part of a randomized controlled trial evaluating kit effectiveness. Participants were women aged 30-65 and under-screened for cervical cancer in a safety-net healthcare system. We conducted telephone surveys in English/Spanish among a subgroup of trial participants, assessed differences between groups, and determined statistical significance at p<0.05.
Results: Over half of 233 survey participants reported that clinic-based screening (Pap) is uncomfortable (67.8%), embarrassing (52.4%), and discomfort seeing male providers (63.1%). The last two factors were significantly more prevalent among Spanish versus English speakers (66.4% vs. 30% (p=0.000) and 69.9 vs. 52.2% (p=0.006), respectively). Most women who completed the kit found Pap more embarrassing (69.3%), stressful (55.6%), and less convenient (55.6%) than the kit. The first factor was more prevalent among Spanish versus English speakers (79.6% vs. 53.38%, p=0.001) and among patients with elementary education or below.
Conclusions: The COVID-19 pandemic influenced most (59.5%) to participate in the trial due to fear of COVID, difficulty making appointments, and ease of using kits. HPV self-sampling kits may reduce barriers among under-screened women in a safety-net system.
Funding: This study is supported by a grant from the National Institute for Minority Health and Health Disparities (NIMHD, R01MD013715, PI: JR Montealegre).
Clinical trial number: NCT03898167.