Mortality: The challenges of estimating biological age

A comparison of nine different approaches over a period of 20 years reveals the most promising indicators for biological age.
  1. Alexey Moskalev  Is a corresponding author
  1. Ural Branch of Russian Academy of Sciences, Russian Federation
  2. Syktyvkar State University, Russian Federation
  3. Russian Academy of Sciences, Russian Federation

To see if treatments to ward off aging work, first we need a way to measure biological age reliably (Moskalev, 2019). Biological age is a complex parameter involving the calendar age of a person, their health as relating to their age, and medical signs of when they might die of old age. Historically, the first estimates of biological age were based on markers that could be measured in the clinic (such as inflammation, glucose resistance, and endocrine markers) and on functional tests (such as cognitive function and cardiorespiratory fitness; reviewed in Jia et al., 2017). Such markers have a direct clinical interpretation, but even if they predict mortality better than passport age, it is unclear to what extent they measure biological aging itself, rather than health deterioration for other reasons. Additionally, these markers often only work well as averaged indicators in very large samples, and vary a lot between individuals. However, it may be possible to overcome these limitations by using artificial intelligence to generate models using several aging biomarkers (Zhavoronkov et al., 2019).

Other approaches, based on a deeper understanding of the molecular and cellular causes of aging, include measuring the levels of p16 (a marker for cellular senescence or when a cell stops dividing) and measuring the telomere length in leukocytes (biological age increases as telomere length decreases; Waaijer et al., 2012; Epel et al., 2009). Theoretically, these markers should be more sensitive to early signs of aging (as opposed to mortality and frailty) but, similar to clinical markers for individual patients, they lack robustness and reproducibility. This is because aging is a multi-level process, so markers of individual mechanisms cannot cover all its aspects.

A third approach is to use ‘omics’ (that is, to analyze the transcriptome, methylome, proteome and metabolome). Changes in the ‘omes’ are the result of changes in the organism at different levels, making them a useful way to approach the complexity of the aging process. Using this approach, there is no single biological age, but rather a metabolic, proteomic or methylome age. Multi-omics approaches have also been used to assess the rate of aging (Solovev et al., 2020).

Within omics, analyses of DNA methylation or epigenetic clocks are the most robust indicator of age-related changes and have become a booming area of research (Bell et al., 2019). But questions still remain. To what extent are epigenetic clocks a function of age, and to what extent part of biological aging? How does the epigenome change with age? How closely are epigenetic clocks associated with mortality? Is it possible to reverse the epigenetic age, for example through lifestyle changes or interventions? Diet, exercise, education and lifestyle factors seem to be able to influence the rate of aging according to the epigenetic clock (Quach et al., 2017; Gensous et al., 2019; Sae-Lee et al., 2018). Certain drugs can slow down the epigenetic clock in cells cultured in the lab (Horvath et al., 2019) and certain treatments have also proved to be effective in vivo (Chen et al., 2019; Fahy et al., 2019).

Now, in eLife, Sara Hägg from the Karolinska Institute and colleagues from the University of California Riverside, Indiana University Southeast and Jönköping University – with Xia Li as first author – study how nine different methods to estimate biological age change over time in a cohort of 845 middle-aged and older individuals from Sweden who were studied over a period of 20 years (Li et al., 2020). Three of the biological ages measured were functional (cognitive function, functional aging index, and frailty index) and four were based on the levels of DNA methylation (called Horvath, Hannum, PhenoAge and GrimAge). The other two were telomere length (measured by qPCR) and physiological age (calculated as a composite score of clinical measurements such as body-mass index or waist circumference, and blood biomarkers such as hemoglobin or cholesterol).

This study is unique because it compares several approaches at once and evaluates how the measurements change over time: functional data and biological samples were collected nine times between 1986 and 2014. The profiles for the three functional measurements indicated that accelerated aging started around the age of 70, whereas the other biological ages showed linear growth with time.

The authors found sex differences in the mean levels of the different biological ages. Women exhibited longer telomere length and lower DNA methylation age compared to men, but also averaged higher in two of the three functional estimates. Telomere length showed the weakest correlations with both chronological age and with the other measurements. The highest correlations were between two of the DNA methylation ages (Horvath and Hannum), and between the functional aging index and the other two functional biological ages. Regarding the ability of biological ages to predict age-related mortality, one of the functional estimates (frailty index) and one of the methylation clocks (GrimAge) were the best predictors, while telomere length was the worst.

These results indicate that methylation age and frailty index are the most promising approaches to estimating biological age, and underline the value of assessing these estimates overtime in the same population.

References

  1. Book
    1. Moskalev A
    (2019) Introduction
    In: Moskalev A, editors. Biomarkers of Human Aging. Cham: Springer International Publishing. pp. 1–4.
    https://doi.org/10.1007/978-3-030-24970-0_1

Article and author information

Author details

  1. Alexey Moskalev

    Alexey Moskalev is in the Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, and Syktyvkar State University, both in Syktyvkar, Russia, and the Engelhard Institute for Molecular Biology, Russian Academy of Sciences, Moscow, Russia

    For correspondence
    amoskalev@list.ru
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3248-1633

Publication history

  1. Version of Record published: February 11, 2020 (version 1)

Copyright

© 2020, Moskalev

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,830
    Page views
  • 321
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexey Moskalev
(2020)
Mortality: The challenges of estimating biological age
eLife 9:e54969.
https://doi.org/10.7554/eLife.54969

Further reading

    1. Epidemiology and Global Health
    Tina Bech Olesen, Henry Jensen ... Morten Rasmussen
    Research Article

    Background: Worldwide, most colorectal cancer screening programmes were paused at the start of the COVID-19 pandemic, whilst the Danish faecal immunochemical test (FIT)-based programme continued without pausing. We examined colorectal cancer screening participation and compliance with subsequent colonoscopy in Denmark throughout the pandemic.

    Methods: We used data from the Danish Colorectal Cancer Screening Database among individuals aged 50-74 years old invited to participate in colorectal cancer screening from 2018-2021 combined with population-wide registries. Using a generalised linear model, we estimated prevalence ratios (PR) and 95% confidence intervals (CI) of colorectal cancer screening participation within 90 days since invitation and compliance with colonoscopy within 60 days since a positive FIT test during the pandemic in comparison with the previous years adjusting for age, month and year of invitation.

    Results: Altogether, 3,133,947 invitations were sent out to 1,928,725 individuals and there were 94,373 positive FIT tests (in 92,848 individuals) during the study period. Before the pandemic, 60.7% participated in screening within 90 days. A minor reduction in participation was observed at the start of the pandemic (PR=0.95; 95% CI: 0.94-0.96 in pre-lockdown and PR=0.85; 95% CI: 0.85-0.86 in 1st lockdown) corresponding to a participation rate of 54.9% during pre-lockdown and 53.0% during 1st lockdown. This was followed by a 5-10% increased participation in screening corresponding to a participation rate of up to 64.9%. The largest increase in participation was observed among 55-59 year olds and among immigrants. The compliance with colonoscopy within 60 days was 89.9% before the pandemic. A slight reduction was observed during 1st lockdown (PR=0.96; 95% CI: 0.93-0.98), where after it resumed to normal levels.

    Conclusions: Participation in the Danish FIT-based colorectal cancer screening programme and subsequent compliance to colonoscopy after a positive FIT result was only slightly affected by the COVID-19 pandemic.

    Funding: The study was funded by the Danish Cancer Society Scientific Committee (grant number R321-A17417) and the Danish regions.

    1. Epidemiology and Global Health
    2. Medicine
    Nathan J Cheetham, Milla Kibble ... Claire J Steves
    Research Article

    Background: SARS-CoV-2 antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. Higher levels of SARS-CoV-2 anti-Spike antibodies are known to be associated with increased protection against future SARS-CoV-2 infection. However, variation in antibody levels and risk factors for lower antibody levels following each round of SARS-CoV-2 vaccination have not been explored across a wide range of socio-demographic, SARS-CoV-2 infection and vaccination, and health factors within population-based cohorts.

    Methods: Samples were collected from 9,361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies and tested for SARS-CoV-2 antibodies. Cross-sectional sampling was undertaken jointly in April-May 2021 (TwinsUK, N = 4,256; ALSPAC, N = 4,622), and in TwinsUK only in November 2021-January 2022 (N = 3,575). Variation in antibody levels after first, second, and third SARS-CoV-2 vaccination with health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables were analysed. Using multivariable logistic regression models, we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables.

    Results: Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had 3-fold greater odds of SARS-CoV-2 infection over the next six to nine months (OR = 2.9, 95% CI: 1.4, 6.0), compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK 'Shielded Patient List' had consistently greater odds (2- to 4-fold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations.

    Conclusions: These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies.

    Funding: Antibody testing was funded by UK Health Security Agency. The National Core Studies program is funded by COVID-19 Longitudinal Health and Wellbeing - National Core Study (LHW-NCS) HMT/UKRI/MRC (MC_PC_20030 & MC_PC_20059). Related funding was also provided by the NIHR 606 (CONVALESCENCE grant COV-LT-0009). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC.