NuRD subunit CHD4 regulates super-enhancer accessibility in Rhabdomyosarcoma and represents a general tumor dependency

  1. Joana G Marques
  2. Berkley E Gryder
  3. Blaz Pavlovic
  4. Yeonjoo Chung
  5. Quy A Ngo
  6. Fabian Frommelt
  7. Matthias Gstaiger
  8. Young Song
  9. Katharina Benischke
  10. Dominik Laubscher
  11. Marco Wachtel
  12. Javed Khan
  13. Beat W Schäfer  Is a corresponding author
  1. University Children's Hospital, Switzerland
  2. Center for Cancer Research, National Institutes of Health, United States
  3. ETH Zurich, Switzerland
  4. Institute of Molecular Systems Biology, Switzerland

Abstract

The NuRD complex subunit CHD4 is essential for fusion-positive rhabdomyosarcoma (FP-RMS) survival, but the mechanisms underlying this dependency are not understood. Here, a NuRD-specific CRISPR screen demonstrates that FP-RMS is particularly sensitive to CHD4 amongst the NuRD members. Mechanistically, NuRD complex containing CHD4 localizes to super-enhancers where CHD4 generates a chromatin architecture permissive for the binding of the tumor driver and fusion protein PAX3-FOXO1, allowing downstream transcription of its oncogenic program. Moreover, CHD4 depletion removes HDAC2 from the chromatin, leading to an increase and spread of histone acetylation, and prevents the positioning of RNA Polymerase 2 at promoters impeding transcription initiation. Strikingly, analysis of genome-wide cancer dependency databases identifies CHD4 as a general cancer vulnerability. Our findings describe CHD4, a classically defined repressor, as positive regulator of transcription and super-enhancer accessibility as well as establish this remodeler as an unexpected broad tumor susceptibility and promising drug target for cancer therapy.

Data availability

The proteomics dataset supporting the conclusions of this article is available in the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) repository with the dataset identifier PXD015231 (reviewer account: username - reviewer88401@ebi.ac.uk, password - mErsCglm). High-throughput ChIP-seq and DNase data are available through Gene Expression Omnibus (GEO) Superseries with the accession number GSE140115. ChIP-seq data for H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, 587 H3K4me3, BRD4, CTCF, RAD21, HDAC2, and RNA Polymerase 2 as well as DNase I hypersensitivity data obtained for wildtype RH4 cells were previously published (Gryder et al., 2019b, 2017) and are available on the same data repository with the gene accession numbers GSE83728 and GSE116344. The RNA-seq data is available in the European Nucleotide Archive (ENA) with the accession number PRJEB34220 (reviewer account: username - Webin-53797, password - kispiCHD42019).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Joana G Marques

    Oncology, University Children's Hospital, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Berkley E Gryder

    Oncogenomics Section, Center for Cancer Research, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Gaithersburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Blaz Pavlovic

    Oncology, University Children's Hospital, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Yeonjoo Chung

    Oncology, University Children's Hospital, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Quy A Ngo

    Oncology, University Children's Hospital, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian Frommelt

    Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3666-8005
  7. Matthias Gstaiger

    Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Young Song

    Genetics Branch, Center for Cancer Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Katharina Benischke

    Oncology, University Children's Hospital, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Dominik Laubscher

    Oncology, University Children's Hospital, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Marco Wachtel

    Oncology, University Children's Hospital, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Javed Khan

    Pediatric Oncology Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Beat W Schäfer

    Oncology, University Children's Hospital, Zurich, Switzerland
    For correspondence
    beat.schaefer@kispi.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5988-2915

Funding

Swiss National Science Foundation (310030_156923 and 31003A_175558)

  • Beat W Schäfer

Cancer League Switzerland (KLS-3868-02-2016)

  • Beat W Schäfer

Childhood Cancer Research Foundation Switzerland

  • Beat W Schäfer

Innovative Medicines Initiative ULTRA-DD (115766)

  • Fabian Frommelt
  • Matthias Gstaiger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,691
    views
  • 649
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joana G Marques
  2. Berkley E Gryder
  3. Blaz Pavlovic
  4. Yeonjoo Chung
  5. Quy A Ngo
  6. Fabian Frommelt
  7. Matthias Gstaiger
  8. Young Song
  9. Katharina Benischke
  10. Dominik Laubscher
  11. Marco Wachtel
  12. Javed Khan
  13. Beat W Schäfer
(2020)
NuRD subunit CHD4 regulates super-enhancer accessibility in Rhabdomyosarcoma and represents a general tumor dependency
eLife 9:e54993.
https://doi.org/10.7554/eLife.54993

Share this article

https://doi.org/10.7554/eLife.54993

Further reading

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

    1. Cancer Biology
    Anne Fajac, Iva Simeonova ... Franck Toledo
    Research Article

    The Trp53 gene encodes several isoforms of elusive biological significance. Here, we show that mice lacking the Trp53 alternatively spliced (AS) exon, thereby expressing the canonical p53 protein but not isoforms with the AS C-terminus, have unexpectedly lost a male-specific protection against Myc-induced B-cell lymphomas. Lymphomagenesis was delayed in Trp53+/+Eμ-Myc males compared to Trp53ΔAS/ΔAS Eμ-Myc males, but also compared to Trp53+/+Eμ-Myc and Trp53ΔAS/ΔAS Eμ-Myc females. Pre-tumoral splenic cells from Trp53+/+Eμ-Myc males exhibited a higher expression of Ackr4, encoding an atypical chemokine receptor with tumor suppressive effects. We identified Ackr4 as a p53 target gene whose p53-mediated transactivation is inhibited by estrogens, and as a male-specific factor of good prognosis relevant for murine Eμ-Myc-induced and human Burkitt lymphomas. Furthermore, the knockout of ACKR4 increased the chemokine-guided migration of Burkitt lymphoma cells. These data demonstrate the functional relevance of alternatively spliced p53 isoforms and reveal sex disparities in Myc-driven lymphomagenesis.