Unc-4 acts to promote neuronal identity and development of the take-off circuit in the Drosophila CNS

  1. Haluk Lacin  Is a corresponding author
  2. W Ryan Williamson
  3. Gwyneth M Card
  4. James B Skeath
  5. James W Truman
  1. Washington University School of Medicine, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Haluk Lacin

    Genetics, Washington University School of Medicine, Saint Louis, United States
    For correspondence
    lacinhaluk@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2468-9618
  2. W Ryan Williamson

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gwyneth M Card

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7679-3639
  4. James B Skeath

    Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James W Truman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9209-5435

Funding

NIH Office of the Director (NS083086)

  • James B Skeath

HHMI

  • James W Truman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: January 9, 2020
  2. Accepted: March 27, 2020
  3. Accepted Manuscript published: March 27, 2020 (version 1)
  4. Version of Record published: April 14, 2020 (version 2)

Copyright

© 2020, Lacin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,257
    Page views
  • 183
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haluk Lacin
  2. W Ryan Williamson
  3. Gwyneth M Card
  4. James B Skeath
  5. James W Truman
(2020)
Unc-4 acts to promote neuronal identity and development of the take-off circuit in the Drosophila CNS
eLife 9:e55007.
https://doi.org/10.7554/eLife.55007

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Alexandre P Thiery et al.
    Research Article Updated

    Development of tooth shape is regulated by the enamel knot signalling centre, at least in mammals. Fgf signalling regulates differential proliferation between the enamel knot and adjacent dental epithelia during tooth development, leading to formation of the dental cusp. The presence of an enamel knot in non-mammalian vertebrates is debated given differences in signalling. Here, we show the conservation and restriction of fgf3, fgf10, and shh to the sites of future dental cusps in the shark (Scyliorhinus canicula), whilst also highlighting striking differences between the shark and mouse. We reveal shifts in tooth size, shape, and cusp number following small molecule perturbations of canonical Wnt signalling. Resulting tooth phenotypes mirror observed effects in mammals, where canonical Wnt has been implicated as an upstream regulator of enamel knot signalling. In silico modelling of shark dental morphogenesis demonstrates how subtle changes in activatory and inhibitory signals can alter tooth shape, resembling developmental phenotypes and cusp shapes observed following experimental Wnt perturbation. Our results support the functional conservation of an enamel knot-like signalling centre throughout vertebrates and suggest that varied tooth types from sharks to mammals follow a similar developmental bauplan. Lineage-specific differences in signalling are not sufficient in refuting homology of this signalling centre, which is likely older than teeth themselves.

    1. Developmental Biology
    2. Evolutionary Biology
    Sophie Pantalacci
    Insight

    The tooth shape of sharks and mice are regulated by a similar signaling center despite their teeth having very different geometries.