Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer

  1. Carter J Barger
  2. Linda Chee
  3. Mustafa Albahrani
  4. Catalina Munoz-Trujillo
  5. Lidia Boghean
  6. Connor Branick
  7. Kunle Odunsi
  8. Ronny Drapkin
  9. Lee Zou
  10. Adam R Karpf  Is a corresponding author
  1. University of Nebraska Medical Cancer, United States
  2. University of Nebraska Medical Center, United States
  3. Roswell Park Comprehensive Cancer Center, United States
  4. University of Pennsylvania Perelman School of Medicine, United States
  5. Massachusetts General Hospital Cancer Center, Harvard Medical School, United States
  6. University of Nebraska Medical Center;, United States

Abstract

The FOXM1 transcription factor is an oncoprotein and a top biomarker of poor prognosis in human cancer. Overexpression and activation of FOXM1 is frequent in high-grade serous carcinoma (HGSC), the most common and lethal form of human ovarian cancer, and is linked to copy number gains at chromosome 12p13.33. We show that FOXM1 is co-amplified and co-expressed with RHNO1, a gene involved in the ATR-Chk1 signaling pathway that functions in the DNA replication stress (RS) response. We demonstrate that FOXM1 and RHNO1 are head-to-head (i.e. bidirectional) genes (BDG) regulated by a bidirectional promoter (BDP) (named F/R-BDP). FOXM1 and RHNO1 each promote oncogenic phenotypes in HGSC cells, including clonogenic growth, DNA homologous recombination repair (HR), and poly-ADP ribosylase (PARP) inhibitor resistance. FOXM1 and RHNO1 are one of the first examples of oncogenic BDG, and therapeutic targeting of FOXM1/RHNO1 BDG is a potential therapeutic approach for ovarian and other cancers.

Data availability

All data generated are found within the manuscript and supporting files. sc-RNA-seq data is deposited in GEO.

The following previously published data sets were used
    1. Ann-Marie Patch 1
    2. Elizabeth L Christie 2
    3. Dariush Etemadmoghadam 3
    4. Dale W Garsed 2
    5. Joshy George 4
    6. Sian Fereday 2
    7. Katia Nones 1
    8. Prue Cowin 2
    9. Kathryn Alsop 2
    10. Peter J Bailey 5
    11. Karin S Kassahn 6
    12. Felicity Newell 7
    13. Michael C J Quinn 1
    14. Stephen Kazakoff 1
    15. Kelly Quek 7
    16. Charlotte Wilhelm-Benartzi 8
    17. Ed Curry 8
    18. Huei San Leong 2
    19. Australian Ovarian Cancer Study Group; Anne Hamilton 9
    20. Linda Mileshkin 10
    21. George Au-Yeung 2
    22. Catherine Kennedy 11
    23. Jillian Hung 11
    24. Yoke-Eng Chiew 11
    25. Paul Harnett 12
    26. Michael Friedlander 13
    27. Michael Quinn 14
    28. Jan Pyman 14
    29. Stephen Cordner 15
    30. Patricia O'Brien 15
    31. Jodie Leditschke 15
    32. Greg Young 15
    33. Kate Strachan 15
    34. Paul Waring 16
    35. Walid Azar 2
    36. Chris Mitchell 2
    37. Nadia Traficante 2
    38. Joy Hendley 2
    39. Heather Thorne 2
    40. Mark Shackleton 10
    41. David K Miller 7
    42. Gisela Mir Arnau 2
    43. Richard W Tothill 10
    44. Timothy P Holloway 2
    45. Timothy Semple 2
    46. Ivon Harliwong 7
    47. Craig Nourse 7
    48. Ehsan Nourbakhsh 7
    49. Suzanne Manning 7
    50. Senel Idrisoglu 7
    51. Timothy J C Bruxner 7
    52. Angelika N Christ 7
    53. Barsha Poudel 7
    54. Oliver Holmes 1
    55. Matthew Anderson 7
    56. Conrad Leonard 1
    57. Andrew Lonie 17
    58. Nathan Hall 18
    59. Scott Wood 1
    60. Darrin F Taylor 7
    61. Qinying Xu 1
    62. J Lynn Fink 7
    63. Nick Waddell 7
    64. Ronny Drapkin 19
    65. Euan Stronach 8
    66. Hani Gabra 8
    67. Robert Brown 8
    68. Andrea Jewell 20
    69. Shivashankar H Nagaraj 7
    70. Emma Markham 7
    71. Peter J Wilson 7
    72. Jason Ellul 2
    73. Orla McNally 11
    74. Maria A Doyle 2
    75. Ravikiran Vedururu 2
    76. Collin Stewart 21
    77. Ernst Lengyel 20
    78. John V Pearson 1
    79. Nicola Waddell 1
    80. Anna deFazio 11
    81. Sean M Grimmond 5
    82. David D L Bowtell
    (2015) HGSC RNA-seq
    EGAD00001000877.

Article and author information

Author details

  1. Carter J Barger

    Eppley Institute, University of Nebraska Medical Cancer, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Linda Chee

    Eppley Institute, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mustafa Albahrani

    Eppley Institute, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Catalina Munoz-Trujillo

    Eppley Institute, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lidia Boghean

    Eppley Institute, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Connor Branick

    Eppley Institute, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kunle Odunsi

    Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ronny Drapkin

    University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lee Zou

    Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Adam R Karpf

    Eppley Institute, University of Nebraska Medical Center;, Omaha, United States
    For correspondence
    adam.karpf@unmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0866-0666

Funding

National Institutes of Health (P30CA036727)

  • Adam R Karpf

Rivkin Center for Ovarian Cancer

  • Adam R Karpf

Fred & Pamela Pamela Buffett Cancer Center

  • Adam R Karpf

UNMC Fellowship

  • Carter J Barger

McKinsey Ovarian Cancer Research Fund

  • Adam R Karpf

UNMC Core Facility Users Grant

  • Adam R Karpf

National Institutes of Health (T32CA009476)

  • Carter J Barger

National Institutes of Health (F99CA212470)

  • Carter J Barger

National Institutes of Health (P50CA228991)

  • Ronny Drapkin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Barger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,350
    views
  • 335
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carter J Barger
  2. Linda Chee
  3. Mustafa Albahrani
  4. Catalina Munoz-Trujillo
  5. Lidia Boghean
  6. Connor Branick
  7. Kunle Odunsi
  8. Ronny Drapkin
  9. Lee Zou
  10. Adam R Karpf
(2021)
Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer
eLife 10:e55070.
https://doi.org/10.7554/eLife.55070

Share this article

https://doi.org/10.7554/eLife.55070

Further reading

    1. Cancer Biology
    2. Epidemiology and Global Health
    Chelsea L Hansen, Cécile Viboud, Lone Simonsen
    Research Article

    Cancer is considered a risk factor for COVID-19 mortality, yet several countries have reported that deaths with a primary code of cancer remained within historic levels during the COVID-19 pandemic. Here, we further elucidate the relationship between cancer mortality and COVID-19 on a population level in the US. We compared pandemic-related mortality patterns from underlying and multiple cause (MC) death data for six types of cancer, diabetes, and Alzheimer’s. Any pandemic-related changes in coding practices should be eliminated by study of MC data. Nationally in 2020, MC cancer mortality rose by only 3% over a pre-pandemic baseline, corresponding to ~13,600 excess deaths. Mortality elevation was measurably higher for less deadly cancers (breast, colorectal, and hematological, 2–7%) than cancers with a poor survival rate (lung and pancreatic, 0–1%). In comparison, there was substantial elevation in MC deaths from diabetes (37%) and Alzheimer’s (19%). To understand these differences, we simulated the expected excess mortality for each condition using COVID-19 attack rates, life expectancy, population size, and mean age of individuals living with each condition. We find that the observed mortality differences are primarily explained by differences in life expectancy, with the risk of death from deadly cancers outcompeting the risk of death from COVID-19.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Raphael Vidal, Eoin Leen ... Gabriele Büchel
    Research Article

    MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC’s effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.