Tgfb3 collaborates with PP2A and Notch signaling pathways to inhibit retina regeneration
Abstract
Neuronal degeneration in the zebrafish retina stimulates Müller glia (MG) to proliferate and generate multipotent progenitors for retinal repair. Controlling this proliferation is critical to successful regeneration. Previous studies reported that retinal injury stimulates pSmad3 signaling in injury-responsive MG. Contrary to these findings, we report pSmad3 expression is restricted to quiescent MG and suppressed in injury-responsive MG. Our data indicates that Tgfb3 is the ligand responsible for regulating pSmad3 expression. Remarkably, although overexpression of either Tgfb1b or Tgfb3 can stimulate pSmad3 expression in the injured retina, only Tgfb3 inhibits injury-dependent MG proliferation; suggesting the involvement of a non-canonical Tgfb signaling pathway. Furthermore, inhibition of Alk5, PP2A or Notch signaling rescues MG proliferation in Tgfb3 overexpressing zebrafish. Finally, we report that this Tgfb3 signaling pathway is active in zebrafish MG, but not those in mice, which may contribute to the different regenerative capabilities of MG from fish and mammals.
Data availability
GEO accession for RNAseq data is GSE145330
-
Injury and apobec2-dependent regulation of zebrafish Muller glial cell gene expressionNCBI Gene Expression Omnibus, GSE145330.
Article and author information
Author details
Funding
Gilbert Family Foundation, Vision Restoration Initiative (AWD011459)
- Daniel Goldman
National Institutes of Health (NEI RO1 EY018132)
- Daniel Goldman
National Institutes of Health (NEI RO1 EY027310)
- Daniel Goldman
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal studies were approved by the University of Michigan's Institutional Animal Care and Use Committee.
Copyright
© 2020, Lee et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,550
- views
-
- 407
- downloads
-
- 43
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 43
- citations for umbrella DOI https://doi.org/10.7554/eLife.55137