Tgfb3 collaborates with PP2A and Notch signaling pathways to inhibit retina regeneration

  1. Misun Lee
  2. Jin Wan
  3. Daniel Goldman  Is a corresponding author
  1. University of Michigan, United States

Abstract

Neuronal degeneration in the zebrafish retina stimulates Müller glia (MG) to proliferate and generate multipotent progenitors for retinal repair. Controlling this proliferation is critical to successful regeneration. Previous studies reported that retinal injury stimulates pSmad3 signaling in injury-responsive MG. Contrary to these findings, we report pSmad3 expression is restricted to quiescent MG and suppressed in injury-responsive MG. Our data indicates that Tgfb3 is the ligand responsible for regulating pSmad3 expression. Remarkably, although overexpression of either Tgfb1b or Tgfb3 can stimulate pSmad3 expression in the injured retina, only Tgfb3 inhibits injury-dependent MG proliferation; suggesting the involvement of a non-canonical Tgfb signaling pathway. Furthermore, inhibition of Alk5, PP2A or Notch signaling rescues MG proliferation in Tgfb3 overexpressing zebrafish. Finally, we report that this Tgfb3 signaling pathway is active in zebrafish MG, but not those in mice, which may contribute to the different regenerative capabilities of MG from fish and mammals.

Data availability

GEO accession for RNAseq data is GSE145330

The following data sets were generated

Article and author information

Author details

  1. Misun Lee

    Michigan Neuroscience Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jin Wan

    Michigan Neuroscience Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Goldman

    Michigan Neuroscience Institute and Biological Chemistry, University of Michigan, Ann Arbor, United States
    For correspondence
    neuroman@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0013-1188

Funding

Gilbert Family Foundation, Vision Restoration Initiative (AWD011459)

  • Daniel Goldman

National Institutes of Health (NEI RO1 EY018132)

  • Daniel Goldman

National Institutes of Health (NEI RO1 EY027310)

  • Daniel Goldman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal studies were approved by the University of Michigan's Institutional Animal Care and Use Committee.

Reviewing Editor

  1. Jeffrey Gross, University of Pittsburgh School of Medicine, United States

Version history

  1. Received: January 14, 2020
  2. Accepted: May 12, 2020
  3. Accepted Manuscript published: May 12, 2020 (version 1)
  4. Version of Record published: May 26, 2020 (version 2)

Copyright

© 2020, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,213
    Page views
  • 370
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Misun Lee
  2. Jin Wan
  3. Daniel Goldman
(2020)
Tgfb3 collaborates with PP2A and Notch signaling pathways to inhibit retina regeneration
eLife 9:e55137.
https://doi.org/10.7554/eLife.55137

Further reading

    1. Medicine
    2. Stem Cells and Regenerative Medicine
    Thiruma V Arumugam, Asfa Alli-Shaik ... Jayantha Gunaratne
    Research Article

    Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart’s function and its vulnerability to injury and disease.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Tao Zhang, Liyang Wan ... Hongbin Lu
    Research Article Updated

    The attachment site of the rotator cuff (RC) is a classic fibrocartilaginous enthesis, which is the junction between bone and tendon with typical characteristics of a fibrocartilage transition zone. Enthesis development has historically been studied with lineage tracing of individual genes selected a priori, which does not allow for the determination of single-cell landscapes yielding mature cell types and tissues. Here, in together with open-source GSE182997 datasets (three samples) provided by Fang et al., we applied Single-cell RNA sequencing (scRNA-seq) to delineate the comprehensive postnatal RC enthesis growth and the temporal atlas from as early as postnatal day 1 up to postnatal week 8. And, we furtherly performed single-cell spatial transcriptomic sequencing on postnatal day 1 mouse enthesis, in order to deconvolute bone-tendon junction (BTJ) chondrocytes onto spatial spots. In summary, we deciphered the cellular heterogeneity and the molecular dynamics during fibrocartilage differentiation. Combined with current spatial transcriptomic data, our results provide a transcriptional resource that will support future investigations of enthesis development at the mechanistic level and may shed light on the strategies for enhanced RC healing outcomes.