Tgfb3 collaborates with PP2A and Notch signaling pathways to inhibit retina regeneration
Abstract
Neuronal degeneration in the zebrafish retina stimulates Müller glia (MG) to proliferate and generate multipotent progenitors for retinal repair. Controlling this proliferation is critical to successful regeneration. Previous studies reported that retinal injury stimulates pSmad3 signaling in injury-responsive MG. Contrary to these findings, we report pSmad3 expression is restricted to quiescent MG and suppressed in injury-responsive MG. Our data indicates that Tgfb3 is the ligand responsible for regulating pSmad3 expression. Remarkably, although overexpression of either Tgfb1b or Tgfb3 can stimulate pSmad3 expression in the injured retina, only Tgfb3 inhibits injury-dependent MG proliferation; suggesting the involvement of a non-canonical Tgfb signaling pathway. Furthermore, inhibition of Alk5, PP2A or Notch signaling rescues MG proliferation in Tgfb3 overexpressing zebrafish. Finally, we report that this Tgfb3 signaling pathway is active in zebrafish MG, but not those in mice, which may contribute to the different regenerative capabilities of MG from fish and mammals.
Data availability
GEO accession for RNAseq data is GSE145330
-
Injury and apobec2-dependent regulation of zebrafish Muller glial cell gene expressionNCBI Gene Expression Omnibus, GSE145330.
Article and author information
Author details
Funding
Gilbert Family Foundation, Vision Restoration Initiative (AWD011459)
- Daniel Goldman
National Institutes of Health (NEI RO1 EY018132)
- Daniel Goldman
National Institutes of Health (NEI RO1 EY027310)
- Daniel Goldman
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal studies were approved by the University of Michigan's Institutional Animal Care and Use Committee.
Copyright
© 2020, Lee et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,493
- views
-
- 403
- downloads
-
- 36
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Stem Cells and Regenerative Medicine
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited. In this study, we demonstrate that NIC increases the abundance and proliferative activity of murine intestinal stem cells (ISCs) in vivo and ex vivo. Moreover, NIC induces Yes-associated protein (YAP) /Transcriptional coactivator with PDZ-binding motif (TAZ) and Notch signaling in ISCs via α7-nicotinic acetylcholine receptor (nAchR) and protein kinase C (PKC) activation; this effect was not detected in Paneth cells. The inhibition of Notch signaling by dibenzazepine (DBZ) nullified the effects of NIC on ISCs. NIC enhances in vivo tumor formation from ISCs after loss of the tumor suppressor gene Apc, DBZ inhibited NIC-induced tumor growth. Hence, this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggests the use of DBZ as a potential therapeutic strategy for treating intestinal tumors.
-
- Developmental Biology
- Stem Cells and Regenerative Medicine
A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors. We first identified nine candidate TFs that we predicted to be involved in blood cell emergence during development, then generated tagged gRNAs directed to the transcriptional start site of these TFs that could also be detected during single-cell RNA sequencing (scRNAseq). iCRISPRa activation of these endogenous TFs resulted in a significant expansion of arterial-fated endothelial cells expressing high levels of IGFBP2, and our analysis indicated that IGFBP2 is involved in the remodelling of metabolic activity during in vitro endothelial to haematopoietic transition. As well as providing fundamental new insights into the mechanisms of haematopoietic differentiation, the broader applicability of iCRISPRa provides a valuable tool for studying dynamic processes in development and for recapitulating abnormal phenotypes characterised by ectopic activation of specific endogenous gene expression in a wide range of systems.