1. Neuroscience
Download icon

A critical re-evaluation of fMRI signatures of motor sequence learning

  1. Eva Berlot
  2. Nicola J Popp
  3. Jörn Diedrichsen  Is a corresponding author
  1. University of Western Ontario, Canada
Research Article
  • Cited 11
  • Views 2,149
  • Annotations
Cite this article as: eLife 2020;9:e55241 doi: 10.7554/eLife.55241


Despite numerous studies, there is little agreement about what brain changes accompany motor sequence learning, partly because of a general publication bias that favors novel results. We therefore decided to systematically reinvestigate proposed functional magnetic resonance imaging correlates of motor learning in a preregistered longitudinal study with four scanning sessions over 5 weeks of training. Activation decreased more for trained than untrained sequences in premotor and parietal areas, without any evidence of learning-related activation increases. Premotor and parietal regions also exhibited changes in the fine-grained, sequence-specific activation patterns early in learning, which stabilized later. No changes were observed in the primary motor cortex (M1). Overall, our study provides evidence that human motor sequence learning occurs outside of M1. Furthermore, it shows that we cannot expect to find activity increases as an indicator for learning, making subtle changes in activity patterns across weeks the most promising fMRI correlate of training-induced plasticity.

Data availability

fMRI data and analysis pipelines have been deposted to OpenNeuro, under the accession number ds002776. Analysis code is available on GitHub at https://github.com/eberlot/motor_sequence_learning.git

The following data sets were generated

Article and author information

Author details

  1. Eva Berlot

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  2. Nicola J Popp

    The Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    No competing interests declared.
  3. Jörn Diedrichsen

    The Brain and Mind Institute, Department of Statistical and Actuarial Sciences, Department of Computer Science, University of Western Ontario, London, Canada
    For correspondence
    Competing interests
    Jörn Diedrichsen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0264-8532


Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant (RGPIN-2016-04890))

  • Jörn Diedrichsen

Canada First Research Excellence Fund (BrainsCAN)

  • Jörn Diedrichsen

Ontario Trillium Foundation (Graduate Student Scholarship (to EB))

  • Jörn Diedrichsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Human subjects: Informed consent and data usage agreement was obtained from participants prior to the onset of the study. It was emphasized that participants could withdraw from the study at any timepoint. The experimental procedures were approved by the Ethics Committee at Western University (HSREB File Number: 107061).

Reviewing Editor

  1. Marius V Peelen, Radboud University, Netherlands

Publication history

  1. Received: January 17, 2020
  2. Accepted: April 28, 2020
  3. Accepted Manuscript published: May 13, 2020 (version 1)
  4. Version of Record published: June 2, 2020 (version 2)


© 2020, Berlot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,149
    Page views
  • 295
  • 11

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Anika Stockert et al.
    Research Article

    The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short-timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion- guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.

    1. Neuroscience
    Elena N Judd et al.
    Research Article

    The cerebellum consists of parallel circuit modules that contribute to diverse behaviors, spanning motor to cognitive. Recent work employing cell-type specific tracing has identified circumscribed output channels of the cerebellar nuclei that could confer tight functional specificity. These studies have largely focused on excitatory projections of the cerebellar nuclei, however, leaving open the question of whether inhibitory neurons also constitute multiple output modules. We mapped output and input patterns to intersectionally restricted cell types of the interposed and adjacent interstitial nuclei in mice. In contrast to the widespread assumption of primarily excitatory outputs and restricted inferior olive-targeting inhibitory output, we found that inhibitory neurons from this region ramified widely within the brainstem, targeting both motor- and sensory-related nuclei, distinct from excitatory output targets. Despite differences in output targeting, monosynaptic rabies tracing revealed largely shared afferents to both cell classes. We discuss the potential novel functional roles for inhibitory outputs in the context of cerebellar theory.