Performance of a deep learning based neural network in the selection of human blastocysts for implantation

  1. Charles L Bormann
  2. Manoj Kumar Kanakasabapathy
  3. Prudhvi Thirumalaraju
  4. Raghav Gupta
  5. Rohan Pooniwala
  6. Hemanth Kandula
  7. Eduardo Hariton
  8. Irene Souter
  9. Irene Dimitriadis
  10. Leslie B Ramirez
  11. Carol L Curchoe
  12. Jason E Swain
  13. Lynn M Boehnlein
  14. Hadi Shafiee  Is a corresponding author
  1. Massachusetts General Hospital, Harvard Medical School, United States
  2. Brigham and Women's Hospital, Harvard Medical School, United States
  3. Extend Fertility, United States
  4. San Diego Fertility Center, United States
  5. Colorado Center for Reproductive Medicine IVF Laboratory Network, United States
  6. University of Wisconsin, United States

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charles L Bormann
  2. Manoj Kumar Kanakasabapathy
  3. Prudhvi Thirumalaraju
  4. Raghav Gupta
  5. Rohan Pooniwala
  6. Hemanth Kandula
  7. Eduardo Hariton
  8. Irene Souter
  9. Irene Dimitriadis
  10. Leslie B Ramirez
  11. Carol L Curchoe
  12. Jason E Swain
  13. Lynn M Boehnlein
  14. Hadi Shafiee
(2020)
Performance of a deep learning based neural network in the selection of human blastocysts for implantation
eLife 9:e55301.
https://doi.org/10.7554/eLife.55301

Share this article

https://doi.org/10.7554/eLife.55301