A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast

  1. Abbas Jariani
  2. Lieselotte Vermeersch
  3. Bram Cerulus
  4. Gemma Perez-Samper
  5. Karin Voordeckers
  6. Thomas Van Brussel
  7. Bernard Thienpont
  8. Diether Lambrechts
  9. Kevin J Verstrepen  Is a corresponding author
  1. VIB-KU Leuven Center for Microbiology, Belgium
  2. VIB-KU Leuven Center for Cancer Biology, Belgium

Abstract

Current methods for single-cell RNA sequencing (scRNA-seq) of yeast cells do not match the throughput and relative simplicity of the state-of-the-art techniques that are available for mammalian cells. In this study, we report how 10x Genomics' droplet-based single-cell RNA sequencing technology can be modified to allow analysis of yeast cells. The protocol, which is based on in-droplet spheroplasting of the cells, yields an order-of-magnitude higher throughput in comparison to existing methods. After extensive validation of the method, we demonstrate its use by studying the dynamics of the response of isogenic yeast populations to a shift in carbon source, revealing the heterogeneity and underlying molecular processes during this shift. The method we describe opens new avenues for studies focusing on yeast cells, as well as other cells with a degradable cell wall.

Data availability

Sequencing data have been deposited in GEO under accession code GSE144820

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Abbas Jariani

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2715-933X
  2. Lieselotte Vermeersch

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5789-2220
  3. Bram Cerulus

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  4. Gemma Perez-Samper

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  5. Karin Voordeckers

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  6. Thomas Van Brussel

    VIB-KU Leuven Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  7. Bernard Thienpont

    VIB-KU Leuven Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8772-6845
  8. Diether Lambrechts

    VIB-KU Leuven Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  9. Kevin J Verstrepen

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    For correspondence
    kevin.verstrepen@kuleuven.vib.be
    Competing interests
    Kevin J Verstrepen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3077-6219

Funding

Fonds Wetenschappelijk Onderzoek

  • Lieselotte Vermeersch
  • Bram Cerulus

Vlaams Instituut voor Biotechnologie

  • Kevin J Verstrepen

European Research Council (Council CoG682009)

  • Kevin J Verstrepen

AB-InBev-Baillet Latour Fund

  • Kevin J Verstrepen

Human Frontier Science Program (246 RGP0050/2013)

  • Kevin J Verstrepen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Jariani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,604
    views
  • 983
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abbas Jariani
  2. Lieselotte Vermeersch
  3. Bram Cerulus
  4. Gemma Perez-Samper
  5. Karin Voordeckers
  6. Thomas Van Brussel
  7. Bernard Thienpont
  8. Diether Lambrechts
  9. Kevin J Verstrepen
(2020)
A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast
eLife 9:e55320.
https://doi.org/10.7554/eLife.55320

Share this article

https://doi.org/10.7554/eLife.55320

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Timothy Fuqua, Yiqiao Sun, Andreas Wagner
    Research Article

    Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called –10 and –35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 ‘promoter islands’, DNA sequences enriched with –10 and –35 boxes. We mutagenize these starting ‘parent’ sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new –10 and –35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all –10 and –35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new –10 and –35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that –10 and –35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.