A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast

  1. Abbas Jariani
  2. Lieselotte Vermeersch
  3. Bram Cerulus
  4. Gemma Perez-Samper
  5. Karin Voordeckers
  6. Thomas Van Brussel
  7. Bernard Thienpont
  8. Diether Lambrechts
  9. Kevin J Verstrepen  Is a corresponding author
  1. VIB-KU Leuven Center for Microbiology, Belgium
  2. VIB-KU Leuven Center for Cancer Biology, Belgium

Abstract

Current methods for single-cell RNA sequencing (scRNA-seq) of yeast cells do not match the throughput and relative simplicity of the state-of-the-art techniques that are available for mammalian cells. In this study, we report how 10x Genomics' droplet-based single-cell RNA sequencing technology can be modified to allow analysis of yeast cells. The protocol, which is based on in-droplet spheroplasting of the cells, yields an order-of-magnitude higher throughput in comparison to existing methods. After extensive validation of the method, we demonstrate its use by studying the dynamics of the response of isogenic yeast populations to a shift in carbon source, revealing the heterogeneity and underlying molecular processes during this shift. The method we describe opens new avenues for studies focusing on yeast cells, as well as other cells with a degradable cell wall.

Data availability

Sequencing data have been deposited in GEO under accession code GSE144820

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Abbas Jariani

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2715-933X
  2. Lieselotte Vermeersch

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5789-2220
  3. Bram Cerulus

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  4. Gemma Perez-Samper

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  5. Karin Voordeckers

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  6. Thomas Van Brussel

    VIB-KU Leuven Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  7. Bernard Thienpont

    VIB-KU Leuven Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8772-6845
  8. Diether Lambrechts

    VIB-KU Leuven Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
    Competing interests
    No competing interests declared.
  9. Kevin J Verstrepen

    VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
    For correspondence
    kevin.verstrepen@kuleuven.vib.be
    Competing interests
    Kevin J Verstrepen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3077-6219

Funding

Fonds Wetenschappelijk Onderzoek

  • Lieselotte Vermeersch
  • Bram Cerulus

Vlaams Instituut voor Biotechnologie

  • Kevin J Verstrepen

European Research Council (Council CoG682009)

  • Kevin J Verstrepen

AB-InBev-Baillet Latour Fund

  • Kevin J Verstrepen

Human Frontier Science Program (246 RGP0050/2013)

  • Kevin J Verstrepen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Jariani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,531
    views
  • 980
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abbas Jariani
  2. Lieselotte Vermeersch
  3. Bram Cerulus
  4. Gemma Perez-Samper
  5. Karin Voordeckers
  6. Thomas Van Brussel
  7. Bernard Thienpont
  8. Diether Lambrechts
  9. Kevin J Verstrepen
(2020)
A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast
eLife 9:e55320.
https://doi.org/10.7554/eLife.55320

Share this article

https://doi.org/10.7554/eLife.55320

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.