Genomic and phenotypic evolution of Escherichia coli in a novel citrate-only resource environment

  1. Zachary David Blount  Is a corresponding author
  2. Rohan Maddamsetti  Is a corresponding author
  3. Nkrumah A Grant  Is a corresponding author
  4. Sumaya T Ahmed
  5. Tanush Jagdish
  6. Jessica A Baxter
  7. Brooke A Sommerfeld
  8. Alice Tillman
  9. Jeremy Moore
  10. Joan L Slonczewski
  11. Jeffrey E Barrick
  12. Richard E Lenski
  1. Michigan State University, United States
  2. Harvard Medical School, United States
  3. Kenyon College, United States
  4. University of Texas at Austin, United States

Abstract

Evolutionary innovations allow populations to colonize new ecological niches. We previously reported that aerobic growth on citrate (Cit+) evolved in an Escherichia coli population during adaptation to a minimal glucose medium containing citrate (DM25). Cit+ variants can also grow in citrate-only medium (DM0), a novel environment for E. coli. To study adaptation to this new niche, we founded two sets of Cit+ populations and evolved them for 2,500 generations in DM0 or DM25. The evolved lineages acquired numerous parallel mutations, many mediated by transposable elements. Several also evolved amplifications of regions containing the maeA gene. Unexpectedly, some evolved populations and clones show apparent declines in fitness. We also found evidence of substantial cell death in Cit+ clones. Our results thus demonstrate rapid novel trait refinement and adaptation to the novel citrate niche, while also suggesting a recalcitrant mismatch between E. coli physiology and growth on citrate.

Data availability

All analysis and statistical scripts have been deposited at www.datadryad.org (https://doi.org/10.5061/dryad.7wm37pvpp). RNA-Seq data have been deposited in the NCBI SRA under accession PRJNA553503. Genome sequencing data have been deposited in the NCBI SRA under accession PRJNA595472. Analysis code is also available at: https://github.com/rohanmaddamsetti/DM0-evolution.

The following data sets were generated

Article and author information

Author details

  1. Zachary David Blount

    Microbiology and Molecular Genetics; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, United States
    For correspondence
    zachary.david.blount@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5153-0034
  2. Rohan Maddamsetti

    Systems Biology, Harvard Medical School, Boston, United States
    For correspondence
    rohan.maddamsetti@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3370-092X
  3. Nkrumah A Grant

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    For correspondence
    grantnkr@msu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4555-5283
  4. Sumaya T Ahmed

    Biology, Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
  5. Tanush Jagdish

    Systems Biology; BEACON Center for the Study of Evolution in Action, Harvard Medical School, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Jessica A Baxter

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  7. Brooke A Sommerfeld

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  8. Alice Tillman

    Biology, Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
  9. Jeremy Moore

    Biology, Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
  10. Joan L Slonczewski

    Biology, Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3484-1564
  11. Jeffrey E Barrick

    Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    Jeffrey E Barrick, Jeffrey E. Barrick is the owner of Evolvomics LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0888-7358
  12. Richard E Lenski

    Microbiology and Molecular Genetics; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.

Funding

Michigan State University (Ralph Evans Award)

  • Zachary David Blount

Kenyon College (Individual Faculty Development Award)

  • Zachary David Blount

Michigan State University (Rufolph Hugh Award)

  • Nkrumah A Grant

National Science Foundation (DEB-1451740)

  • Richard E Lenski

National Science Foundation (DBI-0939454)

  • Richard E Lenski

USDA National Institute of Food and Agriculture (MICL02253)

  • Richard E Lenski

National Science Foundation (MCB-1923077)

  • Joan L Slonczewski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Blount et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,486
    views
  • 617
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary David Blount
  2. Rohan Maddamsetti
  3. Nkrumah A Grant
  4. Sumaya T Ahmed
  5. Tanush Jagdish
  6. Jessica A Baxter
  7. Brooke A Sommerfeld
  8. Alice Tillman
  9. Jeremy Moore
  10. Joan L Slonczewski
  11. Jeffrey E Barrick
  12. Richard E Lenski
(2020)
Genomic and phenotypic evolution of Escherichia coli in a novel citrate-only resource environment
eLife 9:e55414.
https://doi.org/10.7554/eLife.55414

Share this article

https://doi.org/10.7554/eLife.55414

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Julie N Chuong, Nadav Ben Nun ... David Gresham
    Research Article

    Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.