Genomic and phenotypic evolution of Escherichia coli in a novel citrate-only resource environment

  1. Zachary David Blount  Is a corresponding author
  2. Rohan Maddamsetti  Is a corresponding author
  3. Nkrumah A Grant  Is a corresponding author
  4. Sumaya T Ahmed
  5. Tanush Jagdish
  6. Jessica A Baxter
  7. Brooke A Sommerfeld
  8. Alice Tillman
  9. Jeremy Moore
  10. Joan L Slonczewski
  11. Jeffrey E Barrick
  12. Richard E Lenski
  1. Michigan State University, United States
  2. Harvard Medical School, United States
  3. Kenyon College, United States
  4. University of Texas at Austin, United States

Abstract

Evolutionary innovations allow populations to colonize new ecological niches. We previously reported that aerobic growth on citrate (Cit+) evolved in an Escherichia coli population during adaptation to a minimal glucose medium containing citrate (DM25). Cit+ variants can also grow in citrate-only medium (DM0), a novel environment for E. coli. To study adaptation to this new niche, we founded two sets of Cit+ populations and evolved them for 2,500 generations in DM0 or DM25. The evolved lineages acquired numerous parallel mutations, many mediated by transposable elements. Several also evolved amplifications of regions containing the maeA gene. Unexpectedly, some evolved populations and clones show apparent declines in fitness. We also found evidence of substantial cell death in Cit+ clones. Our results thus demonstrate rapid novel trait refinement and adaptation to the novel citrate niche, while also suggesting a recalcitrant mismatch between E. coli physiology and growth on citrate.

Data availability

All analysis and statistical scripts have been deposited at www.datadryad.org (https://doi.org/10.5061/dryad.7wm37pvpp). RNA-Seq data have been deposited in the NCBI SRA under accession PRJNA553503. Genome sequencing data have been deposited in the NCBI SRA under accession PRJNA595472. Analysis code is also available at: https://github.com/rohanmaddamsetti/DM0-evolution.

The following data sets were generated

Article and author information

Author details

  1. Zachary David Blount

    Microbiology and Molecular Genetics; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, United States
    For correspondence
    zachary.david.blount@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5153-0034
  2. Rohan Maddamsetti

    Systems Biology, Harvard Medical School, Boston, United States
    For correspondence
    rohan.maddamsetti@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3370-092X
  3. Nkrumah A Grant

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    For correspondence
    grantnkr@msu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4555-5283
  4. Sumaya T Ahmed

    Biology, Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
  5. Tanush Jagdish

    Systems Biology; BEACON Center for the Study of Evolution in Action, Harvard Medical School, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Jessica A Baxter

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  7. Brooke A Sommerfeld

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.
  8. Alice Tillman

    Biology, Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
  9. Jeremy Moore

    Biology, Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
  10. Joan L Slonczewski

    Biology, Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3484-1564
  11. Jeffrey E Barrick

    Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    Jeffrey E Barrick, Jeffrey E. Barrick is the owner of Evolvomics LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0888-7358
  12. Richard E Lenski

    Microbiology and Molecular Genetics; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, United States
    Competing interests
    No competing interests declared.

Funding

Michigan State University (Ralph Evans Award)

  • Zachary David Blount

Kenyon College (Individual Faculty Development Award)

  • Zachary David Blount

Michigan State University (Rufolph Hugh Award)

  • Nkrumah A Grant

National Science Foundation (DEB-1451740)

  • Richard E Lenski

National Science Foundation (DBI-0939454)

  • Richard E Lenski

USDA National Institute of Food and Agriculture (MICL02253)

  • Richard E Lenski

National Science Foundation (MCB-1923077)

  • Joan L Slonczewski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Blount et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,273
    views
  • 585
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary David Blount
  2. Rohan Maddamsetti
  3. Nkrumah A Grant
  4. Sumaya T Ahmed
  5. Tanush Jagdish
  6. Jessica A Baxter
  7. Brooke A Sommerfeld
  8. Alice Tillman
  9. Jeremy Moore
  10. Joan L Slonczewski
  11. Jeffrey E Barrick
  12. Richard E Lenski
(2020)
Genomic and phenotypic evolution of Escherichia coli in a novel citrate-only resource environment
eLife 9:e55414.
https://doi.org/10.7554/eLife.55414

Share this article

https://doi.org/10.7554/eLife.55414

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact ORFs, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' LTR, derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8 derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.