Cell and molecular transitions during efficient dedifferentiation

  1. John ME Nichols
  2. Vlatka Antolovic
  3. Jacob D Reich
  4. Sophie Brameyer
  5. Peggy Paschke
  6. Jonathan R Chubb  Is a corresponding author
  1. University College London, United Kingdom
  2. Ludwig-Maximilians-University Munich, Germany
  3. Beatson Institute, United Kingdom

Abstract

Dedifferentiation is a critical response to tissue damage, yet is not well understood, even at a basic phenomenological level. Developing Dictyostelium cells undergo highly efficient dedifferentiation, completed by most cells within 24 hours. We use this rapid response to investigate the control features of dedifferentiation, combining single cell imaging with high temporal resolution transcriptomics. Gene expression during dedifferentiation was predominantly a simple reversal of developmental changes, with expression changes not following this pattern primarily associated with ribosome biogenesis. Mutation of genes induced early in dedifferentiation did not strongly perturb the reversal of development. This apparent robustness may arise from adaptability of cells: the relative temporal ordering of cell and molecular events was not absolute, suggesting cell programmes reach the same end using different mechanisms. In addition, although cells start from different fates, they rapidly converged on a single expression trajectory. These regulatory features may contribute to dedifferentiation responses during regeneration.

Data availability

Sequencing data have been deposited to GEO under the accession number GSE144892

The following data sets were generated

Article and author information

Author details

  1. John ME Nichols

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Vlatka Antolovic

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacob D Reich

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sophie Brameyer

    Microbiology, Ludwig-Maximilians-University Munich, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6779-2343
  5. Peggy Paschke

    Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jonathan R Chubb

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    For correspondence
    j.chubb@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6898-9765

Funding

Wellcome (202867/Z/16/Z)

  • Jonathan R Chubb

Medical Research Council (MC_U12266B)

  • Jonathan R Chubb

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Nichols et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,201
    views
  • 390
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John ME Nichols
  2. Vlatka Antolovic
  3. Jacob D Reich
  4. Sophie Brameyer
  5. Peggy Paschke
  6. Jonathan R Chubb
(2020)
Cell and molecular transitions during efficient dedifferentiation
eLife 9:e55435.
https://doi.org/10.7554/eLife.55435

Share this article

https://doi.org/10.7554/eLife.55435

Further reading

    1. Developmental Biology
    Anastasiia Lozovska, Ana Casaca ... Moises Mallo
    Research Article

    During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.