Cell and molecular transitions during efficient dedifferentiation

  1. John ME Nichols
  2. Vlatka Antolovic
  3. Jacob D Reich
  4. Sophie Brameyer
  5. Peggy Paschke
  6. Jonathan R Chubb  Is a corresponding author
  1. University College London, United Kingdom
  2. Ludwig-Maximilians-University Munich, Germany
  3. Beatson Institute, United Kingdom

Abstract

Dedifferentiation is a critical response to tissue damage, yet is not well understood, even at a basic phenomenological level. Developing Dictyostelium cells undergo highly efficient dedifferentiation, completed by most cells within 24 hours. We use this rapid response to investigate the control features of dedifferentiation, combining single cell imaging with high temporal resolution transcriptomics. Gene expression during dedifferentiation was predominantly a simple reversal of developmental changes, with expression changes not following this pattern primarily associated with ribosome biogenesis. Mutation of genes induced early in dedifferentiation did not strongly perturb the reversal of development. This apparent robustness may arise from adaptability of cells: the relative temporal ordering of cell and molecular events was not absolute, suggesting cell programmes reach the same end using different mechanisms. In addition, although cells start from different fates, they rapidly converged on a single expression trajectory. These regulatory features may contribute to dedifferentiation responses during regeneration.

Data availability

Sequencing data have been deposited to GEO under the accession number GSE144892

The following data sets were generated

Article and author information

Author details

  1. John ME Nichols

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Vlatka Antolovic

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacob D Reich

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sophie Brameyer

    Microbiology, Ludwig-Maximilians-University Munich, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6779-2343
  5. Peggy Paschke

    Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jonathan R Chubb

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    For correspondence
    j.chubb@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6898-9765

Funding

Wellcome (202867/Z/16/Z)

  • Jonathan R Chubb

Medical Research Council (MC_U12266B)

  • Jonathan R Chubb

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Nichols et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,135
    views
  • 384
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John ME Nichols
  2. Vlatka Antolovic
  3. Jacob D Reich
  4. Sophie Brameyer
  5. Peggy Paschke
  6. Jonathan R Chubb
(2020)
Cell and molecular transitions during efficient dedifferentiation
eLife 9:e55435.
https://doi.org/10.7554/eLife.55435

Share this article

https://doi.org/10.7554/eLife.55435

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.

    1. Developmental Biology
    2. Neuroscience
    Yuqi Cai, Zhirong Zhao ... Miao He
    Short Report

    Multiple embryonic origins give rise to forebrain oligodendrocytes (OLs), yet controversies and uncertainty exist regarding their differential contributions. We established intersectional and subtractional strategies to genetically fate map OLs produced by medial ganglionic eminence/preoptic area (MGE/POA), lateral/caudal ganglionic eminences (LGE/CGE), and dorsal pallium in the mouse brain. We found that, contrary to the canonical view, LGE/CGE-derived OLs make minimum contributions to the neocortex and corpus callosum, but dominate piriform cortex and anterior commissure. Additionally, MGE/POA-derived OLs, instead of being entirely eliminated, make small but sustained contribution to cortex with a distribution pattern distinctive from those derived from the dorsal origin. Our study provides a revised and more comprehensive view of cortical and white matter OL origins, and established valuable new tools and strategies for future OL studies.