Serine phosphorylation regulates the P-type potassium pump KdpFABC

  1. Marie E Sweet
  2. Xihui Zhang
  3. Hediye Erdjument-Bromage
  4. Vikas Dubey
  5. Himanshu Khandelia
  6. Thomas A Neubert
  7. Bjorn P Pedersen
  8. David L Stokes  Is a corresponding author
  1. NYU School of Medicine, United States
  2. University of Southern Denmark, Denmark
  3. Aarhus University, Denmark

Abstract

KdpFABC is an ATP-dependent K+ pump that ensures bacterial survival in K+-deficient environments. Whereas transcriptional activation of kdpFABC expression is well studied, a mechanism for down regulation when K+ levels are restored has not been described. Here we show that KdpFABC is inhibited when cells return to a K+-rich environment. The mechanism of inhibition involves phosphorylation of Ser162 on KdpB, which can be reversed in vitro by treatment with serine phosphatase. Mutating Ser162 to Alanine produces constitutive activity, whereas the phosphomimetic Ser162Asp mutation inactivates the pump. Analyses of the transport cycle show that serine phosphorylation abolishes the K+-dependence of ATP hydrolysis and blocks the catalytic cycle after formation of the aspartyl phosphate intermediate (E1~P). This regulatory mechanism is unique amongst P-type pumps and this study furthers our understanding of how bacteria control potassium homeostasis to maintain cell volume and osmotic potential.

Data availability

Raw mass spectrometry files have been deposited to the MassIVE database under accession code MSV000084906

The following data sets were generated

Article and author information

Author details

  1. Marie E Sweet

    Skirball Institute, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xihui Zhang

    Skirball Institute, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hediye Erdjument-Bromage

    Skirball Institute, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vikas Dubey

    University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Himanshu Khandelia

    University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas A Neubert

    Skirball Institute, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bjorn P Pedersen

    Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. David L Stokes

    Skirball Institute, NYU School of Medicine, New York, United States
    For correspondence
    stokes@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5455-8163

Funding

National Institutes of Health (R01 GM108043)

  • David L Stokes

National Institutes of Health (S10 RR027990)

  • Thomas A Neubert

European Research Council (637372)

  • Bjorn P Pedersen

Independent Research Fund Denmark (DFF-8021-00161)

  • Bjorn P Pedersen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Sweet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,331
    views
  • 174
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marie E Sweet
  2. Xihui Zhang
  3. Hediye Erdjument-Bromage
  4. Vikas Dubey
  5. Himanshu Khandelia
  6. Thomas A Neubert
  7. Bjorn P Pedersen
  8. David L Stokes
(2020)
Serine phosphorylation regulates the P-type potassium pump KdpFABC
eLife 9:e55480.
https://doi.org/10.7554/eLife.55480

Share this article

https://doi.org/10.7554/eLife.55480

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.