Revealing architectural order with quantitative label-free imaging and deep learning

  1. Syuan-Ming Guo
  2. Li-Hao Yeh
  3. Jenny Folkesson
  4. Ivan E Ivanov
  5. Anitha P Krishnan
  6. Matthew G Keefe
  7. Ezzat Hashemi
  8. David Shin
  9. Bryant B Chhun
  10. Nathan H Cho
  11. Manuel D Leonetti
  12. May H Han
  13. Tomasz Nowakowski
  14. Shalin B Mehta  Is a corresponding author
  1. Chan Zuckerberg Biohub, United States
  2. UCSF School of Medicine, United States
  3. Stanford University, United States

Abstract

We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using brightfield imaging. We report a variant of UNet architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.

Data availability

Our experiments generated imaging data from mouse kidney tissue and human brain tissue slices that are useful for machine learning and other analyses. We are in the process of uploading them to a public image archive.

Article and author information

Author details

  1. Syuan-Ming Guo

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Li-Hao Yeh

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2803-5996
  3. Jenny Folkesson

    Data Science, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4673-0522
  4. Ivan E Ivanov

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anitha P Krishnan

    Data Science, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew G Keefe

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ezzat Hashemi

    Department of Neurology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David Shin

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bryant B Chhun

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nathan H Cho

    Cell Atlas, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Manuel D Leonetti

    Cell Atlas, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. May H Han

    Department of Neurology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Tomasz Nowakowski

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Shalin B Mehta

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    shalin.mehta@czbiohub.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2542-3582

Funding

Chan Zuckerberg Biohub

  • Syuan-Ming Guo
  • Li-Hao Yeh
  • Jenny Folkesson
  • Ivan E Ivanov
  • Matthew G Keefe
  • David Shin
  • Bryant B Chhun
  • Nathan H Cho
  • Tomasz Nowakowski
  • Shalin B Mehta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: De-identified brain tissue samples were received with patient consent in accordance with a protocol approved by the Human Gamete, Embryo, and Stem Cell Research Committee (institutional review board) at the University of California, San Francisco.

Copyright

© 2020, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,355
    views
  • 881
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.55502

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.