Revealing architectural order with quantitative label-free imaging and deep learning

Abstract

We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using brightfield imaging. We report a variant of UNet architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.

Data availability

Our experiments generated imaging data from mouse kidney tissue and human brain tissue slices that are useful for machine learning and other analyses. We are in the process of uploading them to a public image archive.

Article and author information

Author details

  1. Syuan-Ming Guo

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Li-Hao Yeh

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2803-5996
  3. Jenny Folkesson

    Data Science, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4673-0522
  4. Ivan E Ivanov

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anitha P Krishnan

    Data Science, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew G Keefe

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ezzat Hashemi

    Department of Neurology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David Shin

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bryant B Chhun

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nathan H Cho

    Cell Atlas, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Manuel D Leonetti

    Cell Atlas, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. May H Han

    Department of Neurology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Tomasz Nowakowski

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Shalin B Mehta

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    shalin.mehta@czbiohub.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2542-3582

Funding

Chan Zuckerberg Biohub

  • Syuan-Ming Guo
  • Li-Hao Yeh
  • Jenny Folkesson
  • Ivan E Ivanov
  • Matthew G Keefe
  • David Shin
  • Bryant B Chhun
  • Nathan H Cho
  • Tomasz Nowakowski
  • Shalin B Mehta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: De-identified brain tissue samples were received with patient consent in accordance with a protocol approved by the Human Gamete, Embryo, and Stem Cell Research Committee (institutional review board) at the University of California, San Francisco.

Copyright

© 2020, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,032
    views
  • 842
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Syuan-Ming Guo
  2. Li-Hao Yeh
  3. Jenny Folkesson
  4. Ivan E Ivanov
  5. Anitha P Krishnan
  6. Matthew G Keefe
  7. Ezzat Hashemi
  8. David Shin
  9. Bryant B Chhun
  10. Nathan H Cho
  11. Manuel D Leonetti
  12. May H Han
  13. Tomasz Nowakowski
  14. Shalin B Mehta
(2020)
Revealing architectural order with quantitative label-free imaging and deep learning
eLife 9:e55502.
https://doi.org/10.7554/eLife.55502

Share this article

https://doi.org/10.7554/eLife.55502

Further reading

    1. Neuroscience
    Arndt-Lukas Klaassen, Björn Rasch
    Research Article

    Sleep associated memory consolidation and reactivation play an important role in language acquisition and learning of new words. However, it is unclear to what extent properties of word learning difficulty impact sleep associated memory reactivation. To address this gap, we investigated in 22 young healthy adults the effectiveness of auditory targeted memory reactivation (TMR) during non-rapid eye movement sleep of artificial words with easy and difficult to learn phonotactical properties. Here, we found that TMR of the easy words improved their overnight memory performance, whereas TMR of the difficult words had no effect. By comparing EEG activities after TMR presentations, we found an increase in slow wave density independent of word difficulty, whereas the spindle-band power nested during the slow wave up-states – as an assumed underlying activity of memory reactivation – was significantly higher in the easy/effective compared to the difficult/ineffective condition. Our findings indicate that word learning difficulty by phonotactics impacts the effectiveness of TMR and further emphasize the critical role of prior encoding depth in sleep associated memory reactivation.

    1. Neuroscience
    Xingfeng Shao, Qinyang Shou ... Danny JJ Wang
    Research Article

    The blood-brain barrier (BBB) plays a pivotal role in protecting the central nervous system (CNS), and shielding it from potential harmful entities. A natural decline of BBB function with aging has been reported in both animal and human studies, which may contribute to cognitive decline and neurodegenerative disorders. Limited data also suggest that being female may be associated with protective effects on BBB function. Here, we investigated age and sex-dependent trajectories of perfusion and BBB water exchange rate (kw) across the lifespan in 186 cognitively normal participants spanning the ages of 8–92 years old, using a non-invasive diffusion-prepared pseudo-continuous arterial spin labeling (DP-pCASL) MRI technique. We found that the pattern of BBB kw decline with aging varies across brain regions. Moreover, results from our DP-pCASL technique revealed a remarkable decline in BBB kw beginning in the early 60 s, which was more pronounced in males. In addition, we observed sex differences in parietal and temporal regions. Our findings provide in vivo results demonstrating sex differences in the decline of BBB function with aging, which may serve as a foundation for future investigations into perfusion and BBB function in neurodegenerative and other brain disorders.