Revealing architectural order with quantitative label-free imaging and deep learning

Abstract

We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using brightfield imaging. We report a variant of UNet architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.

Data availability

Our experiments generated imaging data from mouse kidney tissue and human brain tissue slices that are useful for machine learning and other analyses. We are in the process of uploading them to a public image archive.

Article and author information

Author details

  1. Syuan-Ming Guo

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Li-Hao Yeh

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2803-5996
  3. Jenny Folkesson

    Data Science, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4673-0522
  4. Ivan E Ivanov

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anitha P Krishnan

    Data Science, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew G Keefe

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ezzat Hashemi

    Department of Neurology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David Shin

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bryant B Chhun

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nathan H Cho

    Cell Atlas, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Manuel D Leonetti

    Cell Atlas, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. May H Han

    Department of Neurology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Tomasz Nowakowski

    Anatomy, UCSF School of Medicine, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Shalin B Mehta

    Computational Microscopy, Chan Zuckerberg Biohub, San Francisco, United States
    For correspondence
    shalin.mehta@czbiohub.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2542-3582

Funding

Chan Zuckerberg Biohub

  • Syuan-Ming Guo
  • Li-Hao Yeh
  • Jenny Folkesson
  • Ivan E Ivanov
  • Matthew G Keefe
  • David Shin
  • Bryant B Chhun
  • Nathan H Cho
  • Tomasz Nowakowski
  • Shalin B Mehta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: De-identified brain tissue samples were received with patient consent in accordance with a protocol approved by the Human Gamete, Embryo, and Stem Cell Research Committee (institutional review board) at the University of California, San Francisco.

Copyright

© 2020, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,975
    views
  • 833
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Syuan-Ming Guo
  2. Li-Hao Yeh
  3. Jenny Folkesson
  4. Ivan E Ivanov
  5. Anitha P Krishnan
  6. Matthew G Keefe
  7. Ezzat Hashemi
  8. David Shin
  9. Bryant B Chhun
  10. Nathan H Cho
  11. Manuel D Leonetti
  12. May H Han
  13. Tomasz Nowakowski
  14. Shalin B Mehta
(2020)
Revealing architectural order with quantitative label-free imaging and deep learning
eLife 9:e55502.
https://doi.org/10.7554/eLife.55502

Share this article

https://doi.org/10.7554/eLife.55502

Further reading

    1. Neuroscience
    Morgan Fitzgerald, Eena Kosik, Bradley Voytek
    Insight

    Changes in neural activity thought to reflect brain aging may be partly influenced by age-dependent signals ‘leaking’ from the heart.

    1. Evolutionary Biology
    2. Neuroscience
    Yujiang Wang, Karoline Leiberg ... Bruno Mota
    Research Article

    The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than fourfold increase in effect size (from two standard deviations to eight standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may, therefore, generate superior biomarkers for a range of conditions in the future.