A trans-eQTL network regulates osteoclast multinucleation and bone mass

  1. Marie Pereira  Is a corresponding author
  2. Jeong-Hun Ko
  3. John Logan
  4. Hayley Protheroe
  5. Kee-Beom Kim
  6. Amelia Li Min Tan
  7. Kwon-Sik Park
  8. Maxime Rotival
  9. Enrico Petretto
  10. J H Duncan Bassett  Is a corresponding author
  11. Graham R Williams  Is a corresponding author
  12. Jacques Behmoaras  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Virginia School of Medicine, United States
  3. Duke-NUS Medical School, Singapore
  4. Institut Pasteur, Centre National de la Recherche Scientifique, UMR 2000, France

Abstract

Functional characterisation of cell-type specific regulatory networks is key to establish a causal link between genetic variation and phenotype. The osteoclast offers a unique model for interrogating the contribution of co-regulated genes to in vivo phenotype as its multinucleation and resorption activities determine quantifiable skeletal traits. Here we took advantage of a trans-regulated gene network (MMnet, macrophage multinucleation network) which we found to be significantly enriched for GWAS variants associated with bone-related phenotypes. We found that the network hub gene Bcat1 and seven other co-regulated MMnet genes out of 13, regulate bone function. Specifically, global (Pik3cb-/-, Atp8b2+/-, Igsf8-/-, Eml1-/-, Appl2-/-, Deptor-/-) and myeloid-specific Slc40a1 knockout mice displayed abnormal bone phenotypes. We report opposing effects of MMnet genes on bone mass in mice and osteoclast multinucleation/resorption in humans with strong correlation between the two. These results identify MMnet as a functionally conserved network that regulates osteoclast multinucleation and bone mass.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Marie Pereira

    Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
    For correspondence
    m.pereira@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0711-3385
  2. Jeong-Hun Ko

    Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. John Logan

    Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Hayley Protheroe

    Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Kee-Beom Kim

    Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Amelia Li Min Tan

    Medical school, Duke-NUS Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Kwon-Sik Park

    Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maxime Rotival

    Human Evolutionary Genetics Unit, Institut Pasteur, Centre National de la Recherche Scientifique, UMR 2000, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Enrico Petretto

    Medical school, Duke-NUS Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. J H Duncan Bassett

    Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
    For correspondence
    d.bassett@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  11. Graham R Williams

    Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
    For correspondence
    graham.williams@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8555-8219
  12. Jacques Behmoaras

    Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
    For correspondence
    jacques.behmoaras@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Medical Research Council (MR/N01121X/1)

  • J H Duncan Bassett
  • Graham R Williams
  • Jacques Behmoaras

Wellcome (101123)

  • J H Duncan Bassett
  • Graham R Williams

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were performed in accordance to the U.K. Animal (Scientific Procedures) Act 1986, the ARRIVE guidelines, the EU Directive 2010/63/EU for animal experiments and practices prescribed by the National Institutes of Health in the United States.

Copyright

© 2020, Pereira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,286
    views
  • 218
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marie Pereira
  2. Jeong-Hun Ko
  3. John Logan
  4. Hayley Protheroe
  5. Kee-Beom Kim
  6. Amelia Li Min Tan
  7. Kwon-Sik Park
  8. Maxime Rotival
  9. Enrico Petretto
  10. J H Duncan Bassett
  11. Graham R Williams
  12. Jacques Behmoaras
(2020)
A trans-eQTL network regulates osteoclast multinucleation and bone mass
eLife 9:e55549.
https://doi.org/10.7554/eLife.55549

Share this article

https://doi.org/10.7554/eLife.55549

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.