Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation

  1. Antonio Galeone
  2. Joshua M Adams
  3. Shinya Matsuda
  4. Maximiliano F Presa
  5. Ashutosh Pandey
  6. Seung Yeop Han
  7. Yuriko Tachida
  8. Hiroto Hirayama
  9. Thomas Vaccari
  10. Tadashi Suzuki
  11. Cathleen M Lutz
  12. Markus Affolter
  13. Aamir Zuberi
  14. Hamed Jafar-Nejad  Is a corresponding author
  1. University of Milan, Italy
  2. Baylor College of Medicine, United States
  3. Biozentrum der Universität Basel, Switzerland
  4. The Jackson Laboratory, United States
  5. RIKEN Cluster for Pioneering Research, Japan
  6. RIKEN Global Research Cluster, Japan

Abstract

During endoplasmic reticulum-associated degradation (ERAD), the cytoplasmic enzyme N-glycanase 1 (NGLY1) is proposed to remove N-glycans from misfolded N-glycoproteins after their retrotranslocation from the ER to the cytosol. We previously reported that NGLY1 regulates Drosophila BMP signaling in a tissue-specific manner (Galeone et al. 2017). Here, we establish the Drosophila Dpp and its mouse ortholog BMP4 as biologically relevant targets of NGLY1 and find, unexpectedly, that NGLY1-mediated deglycosylation of misfolded BMP4 is required for its retrotranslocation. Accumulation of misfolded BMP4 in the ER results in ER stress and prompts the ER recruitment of NGLY1. The ER-associated NGLY1 then deglycosylates misfolded BMP4 molecules to promote their retrotranslocation and proteasomal degradation, thereby allowing properly-folded BMP4 molecules to proceed through the secretory pathway and activate signaling in other cells. Our study redefines the role of NGLY1 during ERAD and suggests that impaired BMP4 signaling might underlie some of the NGLY1 deficiency patient phenotypes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Antonio Galeone

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua M Adams

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shinya Matsuda

    Biozentrum der Universität Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7541-7914
  4. Maximiliano F Presa

    The Jackson Laboratory, The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ashutosh Pandey

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Seung Yeop Han

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuriko Tachida

    Glycometabolome Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroto Hirayama

    Glycometabolome Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Thomas Vaccari

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Tadashi Suzuki

    Glycometabolome Team, RIKEN Global Research Cluster, Saitama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Cathleen M Lutz

    The Jackson Laboratory, The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Markus Affolter

    Biozentrum der Universität Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5171-0016
  13. Aamir Zuberi

    The Jackson Laboratory, The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Hamed Jafar-Nejad

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    hamedj@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6403-3379

Funding

Grace Science Foundation (Research grant)

  • Tadashi Suzuki
  • Aamir Zuberi
  • Hamed Jafar-Nejad

National Institutes of Health (R35GM130317)

  • Hamed Jafar-Nejad

European Union (H2020-MSCA individual fellowship #844147)

  • Antonio Galeone

Private Foundation in Italy (Buzzati-Traverso fellowship)

  • Antonio Galeone

Fondazione AIRC per la Ricerca sul Cancro (grant # 20661)

  • Thomas Vaccari

Worldwide Cancer Research (grant #18-0399)

  • Thomas Vaccari

SNSF Ambizione (PZ00P3_180019)

  • Shinya Matsuda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The mice were maintained in the pathogen-free barrier facilities at Jackson Laboratory (Bar Harbor, ME) and at Baylor College of Medicine (Houston, TX). The studies were conducted in accordance with approved institutional animal care and use committee (IACUC) protocols 99066 (Jackson Laboratory) and AN-6012 (Baylor College of Medicine).

Copyright

© 2020, Galeone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,093
    views
  • 356
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.55596

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.