Abstract

Sepsis is a systemic inflammatory response to infection and a leading cause of death. Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in mucosal tissues that recognize bacterial ligands. We investigated MAIT cells during clinical and experimental sepsis, and their contribution to host responses. In experimental sepsis, MAIT-deficient mice had significantly increased mortality and bacterial load, and reduced tissue-specific cytokine responses. MAIT cells of WT mice expressed lower levels of IFN-γ and IL-17a during sepsis compared to sham surgery, changes not seen in non-MAIT T cells. MAIT cells of patients at sepsis presentation were significantly reduced in frequency compared to healthy donors, and were more activated, with decreased IFN-γ production, compared to both healthy donors and paired 90-day samples. Our data suggest that MAIT cells are highly activated and become dysfunctional during clinical sepsis, and contribute to tissue-specific cytokine responses that are protective against mortality during experimental sepsis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Shubhanshi Trivedi

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Labuz

    Internal Medicine (Infectious Diseases), Pathology (Microbiology & Immunology), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cole P Anderson

    Department of Oncological Sciences; Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudia V Araujo

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Antoinette Blair

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elizabeth A Middleton

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Owen Jensen

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander Tran

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew A Mulvey

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert A Campbell

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. J Scott Hale

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthew T Rondina

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Daniel T Leung

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    For correspondence
    daniel.leung@utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8401-0801

Funding

National Institute of Allergy and Infectious Diseases (AI130378)

  • Daniel T Leung

National Heart, Lung, and Blood Institute (HL092161)

  • Matthew T Rondina

National Institute on Aging (AG040631)

  • Matthew T Rondina

National Institute on Aging (AG048022)

  • Matthew T Rondina

National Center for Advancing Translational Sciences (TL1TR002540)

  • Daniel Labuz

National Institute of General Medical Sciences (HG008962)

  • Cole P Anderson

University of Utah (3i Initiative Seed Grant)

  • J Scott Hale
  • Matthew T Rondina
  • Daniel T Leung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were maintained and experiments were performed in accordance with The University of Utah and Institutional Animal Care and Use Committee (IACUC) approved guidelines (protocol # 18-10012).

Human subjects: Each patient or a legally authorized representative provided written, informed consent. The University of Utah Institutional Review Board approved this study. (protocol #102638).

Copyright

© 2020, Trivedi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,621
    views
  • 285
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shubhanshi Trivedi
  2. Daniel Labuz
  3. Cole P Anderson
  4. Claudia V Araujo
  5. Antoinette Blair
  6. Elizabeth A Middleton
  7. Owen Jensen
  8. Alexander Tran
  9. Matthew A Mulvey
  10. Robert A Campbell
  11. J Scott Hale
  12. Matthew T Rondina
  13. Daniel T Leung
(2020)
Mucosal-associated invariant T (MAIT) cells mediate protective host responses in sepsis
eLife 9:e55615.
https://doi.org/10.7554/eLife.55615

Share this article

https://doi.org/10.7554/eLife.55615

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.