Abstract

Sepsis is a systemic inflammatory response to infection and a leading cause of death. Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in mucosal tissues that recognize bacterial ligands. We investigated MAIT cells during clinical and experimental sepsis, and their contribution to host responses. In experimental sepsis, MAIT-deficient mice had significantly increased mortality and bacterial load, and reduced tissue-specific cytokine responses. MAIT cells of WT mice expressed lower levels of IFN-γ and IL-17a during sepsis compared to sham surgery, changes not seen in non-MAIT T cells. MAIT cells of patients at sepsis presentation were significantly reduced in frequency compared to healthy donors, and were more activated, with decreased IFN-γ production, compared to both healthy donors and paired 90-day samples. Our data suggest that MAIT cells are highly activated and become dysfunctional during clinical sepsis, and contribute to tissue-specific cytokine responses that are protective against mortality during experimental sepsis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Shubhanshi Trivedi

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Labuz

    Internal Medicine (Infectious Diseases), Pathology (Microbiology & Immunology), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cole P Anderson

    Department of Oncological Sciences; Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudia V Araujo

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Antoinette Blair

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elizabeth A Middleton

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Owen Jensen

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander Tran

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew A Mulvey

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert A Campbell

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. J Scott Hale

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthew T Rondina

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Daniel T Leung

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    For correspondence
    daniel.leung@utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8401-0801

Funding

National Institute of Allergy and Infectious Diseases (AI130378)

  • Daniel T Leung

National Heart, Lung, and Blood Institute (HL092161)

  • Matthew T Rondina

National Institute on Aging (AG040631)

  • Matthew T Rondina

National Institute on Aging (AG048022)

  • Matthew T Rondina

National Center for Advancing Translational Sciences (TL1TR002540)

  • Daniel Labuz

National Institute of General Medical Sciences (HG008962)

  • Cole P Anderson

University of Utah (3i Initiative Seed Grant)

  • J Scott Hale
  • Matthew T Rondina
  • Daniel T Leung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were maintained and experiments were performed in accordance with The University of Utah and Institutional Animal Care and Use Committee (IACUC) approved guidelines (protocol # 18-10012).

Human subjects: Each patient or a legally authorized representative provided written, informed consent. The University of Utah Institutional Review Board approved this study. (protocol #102638).

Copyright

© 2020, Trivedi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,556
    views
  • 282
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shubhanshi Trivedi
  2. Daniel Labuz
  3. Cole P Anderson
  4. Claudia V Araujo
  5. Antoinette Blair
  6. Elizabeth A Middleton
  7. Owen Jensen
  8. Alexander Tran
  9. Matthew A Mulvey
  10. Robert A Campbell
  11. J Scott Hale
  12. Matthew T Rondina
  13. Daniel T Leung
(2020)
Mucosal-associated invariant T (MAIT) cells mediate protective host responses in sepsis
eLife 9:e55615.
https://doi.org/10.7554/eLife.55615

Share this article

https://doi.org/10.7554/eLife.55615

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.