1. Immunology and Inflammation
  2. Medicine
Download icon

Mucosal-associated invariant T (MAIT) cells mediate protective host responses in sepsis

Research Article
  • Cited 0
  • Views 504
  • Annotations
Cite this article as: eLife 2020;9:e55615 doi: 10.7554/eLife.55615

Abstract

Sepsis is a systemic inflammatory response to infection and a leading cause of death. Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in mucosal tissues that recognize bacterial ligands. We investigated MAIT cells during clinical and experimental sepsis, and their contribution to host responses. In experimental sepsis, MAIT-deficient mice had significantly increased mortality and bacterial load, and reduced tissue-specific cytokine responses. MAIT cells of WT mice expressed lower levels of IFN-γ and IL-17a during sepsis compared to sham surgery, changes not seen in non-MAIT T cells. MAIT cells of patients at sepsis presentation were significantly reduced in frequency compared to healthy donors, and were more activated, with decreased IFN-γ production, compared to both healthy donors and paired 90-day samples. Our data suggest that MAIT cells are highly activated and become dysfunctional during clinical sepsis, and contribute to tissue-specific cytokine responses that are protective against mortality during experimental sepsis.

Article and author information

Author details

  1. Shubhanshi Trivedi

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Labuz

    Internal Medicine (Infectious Diseases), Pathology (Microbiology & Immunology), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cole P Anderson

    Department of Oncological Sciences; Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudia V Araujo

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Antoinette Blair

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elizabeth A Middleton

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Owen Jensen

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander Tran

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew A Mulvey

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert A Campbell

    Molecular Medicine Program, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. J Scott Hale

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthew T Rondina

    Pathology, Div of Microbiology & Immunology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Daniel T Leung

    Internal Medicine (Infectious Diseases), University of Utah, Salt Lake City, United States
    For correspondence
    daniel.leung@utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8401-0801

Funding

National Institute of Allergy and Infectious Diseases (AI130378)

  • Daniel T Leung

National Heart, Lung, and Blood Institute (HL092161)

  • Matthew T Rondina

National Institute on Aging (AG040631)

  • Matthew T Rondina

National Institute on Aging (AG048022)

  • Matthew T Rondina

National Center for Advancing Translational Sciences (TL1TR002540)

  • Daniel Labuz

National Institute of General Medical Sciences (HG008962)

  • Cole P Anderson

University of Utah (3i Initiative Seed Grant)

  • J Scott Hale
  • Matthew T Rondina
  • Daniel T Leung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were maintained and experiments were performed in accordance with The University of Utah and Institutional Animal Care and Use Committee (IACUC) approved guidelines (protocol # 18-10012).

Human subjects: Each patient or a legally authorized representative provided written, informed consent. The University of Utah Institutional Review Board approved this study. (protocol #102638).

Reviewing Editor

  1. Nicola L Harris, Monash University, Australia

Publication history

  1. Received: January 30, 2020
  2. Accepted: November 9, 2020
  3. Accepted Manuscript published: November 9, 2020 (version 1)
  4. Version of Record published: November 20, 2020 (version 2)

Copyright

© 2020, Trivedi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 504
    Page views
  • 105
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    Kirsteen M Tullett et al.
    Research Article

    The dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8+ T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells. Intriguingly, RNF41 regulates the downstream fate of Clec9A by directly binding and ubiquitinating the extracellular domains of Clec9A. At steady-state, RNF41 ubiquitination of Clec9A facilitates interactions with ER-associated proteins and degradation machinery to control Clec9A levels. However, Clec9A interactions are altered following dead cell uptake to favor antigen presentation. These findings provide important insights into antigen cross-presentation and have implications for development of approaches to modulate immune responses.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Sonya Kumar Bharathkar et al.
    Research Article Updated

    Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody, which binds pathogens and commensal microbes. SIgA is a polymeric antibody, typically containing two copies of IgA that assemble with one joining-chain (JC) to form dimeric (d) IgA that is bound by the polymeric Ig-receptor ectodomain, called secretory component (SC). Here, we report the cryo-electron microscopy structures of murine SIgA and dIgA. Structures reveal two IgAs conjoined through four heavy-chain tailpieces and the JC that together form a β-sandwich-like fold. The two IgAs are bent and tilted with respect to each other, forming distinct concave and convex surfaces. In SIgA, SC is bound to one face, asymmetrically contacting both IgAs and JC. The bent and tilted arrangement of complex components limits the possible positions of both sets of antigen-binding fragments (Fabs) and preserves steric accessibility to receptor-binding sites, likely influencing antigen binding and effector functions.