Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers

  1. Marco Molari
  2. Klaus Eyer
  3. Jean Baudry
  4. Simona Cocco
  5. Rémi Monasson  Is a corresponding author
  1. PSL Research and CNRS, France
  2. ETH, Switzerland
  3. ESPCI, PSL Research and CNRS, France
  4. École Normale Supérieure, France

Abstract

Affinity maturation is a complex dynamical process allowing the immune system to generate antibodies capable of recognizing antigens. We introduce a model for the evolution of the distribution of affinities across the antibody population in germinal centers. The model is amenable to detailed mathematical analysis, and gives insight on the mechanisms through which antigen availability controls the rate of maturation and the expansion of the antibody population. It is also capable, upon maximum-likelihood inference of the parameters, to reproduce accurately the distributions of affinities of IgG-secreting cells we measure in mice immunized against Tetanus Toxoid under largely varying conditions (antigen dosage, delay between injections). Both model and experiments show that the average population affinity depends non-monotonically on the antigen dosage. We show that combining quantitative modelling and statistical inference is a concrete way to investigate biological processes underlying affinity maturation (such as selection permissiveness), hardly accessible through measurements.

Data availability

All the data analysed in this work are reported in the supporting excel file attached to the submission. These data come from (1) new experiments reported in the present work, and (2) previously published experiments, see Eyer et al., 2017 (referenced in manuscript). The code containing the implementation of our stochastic and deterministic model is made publicly available in the following repository: https://github.com/mmolari/affinity_maturation. The repository also includes the experimental dataset, the code to run the inference procedure and the code to reproduce the figures of the main paper (Fig. 2 to 6). Please refer to README.md file for further details.

Article and author information

Author details

  1. Marco Molari

    Laboratoire de Physique de l'École Normale Supérieure, PSL Research and CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Klaus Eyer

    Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean Baudry

    Laboratoire Colloides et Materiaux Divises (LCMD), Chemistry, Biology and Innovation (CBI), ESPCI, PSL Research and CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Simona Cocco

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1852-7789
  5. Rémi Monasson

    Laboratoire de Physique de l'École Normale Supérieure, PSL Research and CNRS, Paris, France
    For correspondence
    monasson@lpt.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4459-0204

Funding

H2020 European Research Council (80336)

  • Klaus Eyer

Agence Nationale de la Recherche (CE30-0021-01 RBMPro)

  • Rémi Monasson

Agence Nationale de la Recherche (ANR-10-LABX-31)

  • Jean Baudry

Agence Nationale de la Recherche (ANR- 10-EQPX-34)

  • Jean Baudry

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL)

  • Jean Baudry
  • Simona Cocco
  • Rémi Monasson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Armita Nourmohammad, University of Washington, United States

Ethics

Animal experimentation: Experiments using mice were validated by the CETEA ethics committee number 89 (Institut Pasteur, Paris, France) under #2013-0103, and by the French Ministry of Research under agreement #00513.02.

Version history

  1. Received: February 2, 2020
  2. Accepted: June 12, 2020
  3. Accepted Manuscript published: June 15, 2020 (version 1)
  4. Version of Record published: July 14, 2020 (version 2)

Copyright

© 2020, Molari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,839
    views
  • 310
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marco Molari
  2. Klaus Eyer
  3. Jean Baudry
  4. Simona Cocco
  5. Rémi Monasson
(2020)
Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers
eLife 9:e55678.
https://doi.org/10.7554/eLife.55678

Share this article

https://doi.org/10.7554/eLife.55678

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.