Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers

  1. Marco Molari
  2. Klaus Eyer
  3. Jean Baudry
  4. Simona Cocco
  5. Rémi Monasson  Is a corresponding author
  1. PSL Research and CNRS, France
  2. ETH, Switzerland
  3. ESPCI, PSL Research and CNRS, France
  4. École Normale Supérieure, France

Abstract

Affinity maturation is a complex dynamical process allowing the immune system to generate antibodies capable of recognizing antigens. We introduce a model for the evolution of the distribution of affinities across the antibody population in germinal centers. The model is amenable to detailed mathematical analysis, and gives insight on the mechanisms through which antigen availability controls the rate of maturation and the expansion of the antibody population. It is also capable, upon maximum-likelihood inference of the parameters, to reproduce accurately the distributions of affinities of IgG-secreting cells we measure in mice immunized against Tetanus Toxoid under largely varying conditions (antigen dosage, delay between injections). Both model and experiments show that the average population affinity depends non-monotonically on the antigen dosage. We show that combining quantitative modelling and statistical inference is a concrete way to investigate biological processes underlying affinity maturation (such as selection permissiveness), hardly accessible through measurements.

Data availability

All the data analysed in this work are reported in the supporting excel file attached to the submission. These data come from (1) new experiments reported in the present work, and (2) previously published experiments, see Eyer et al., 2017 (referenced in manuscript). The code containing the implementation of our stochastic and deterministic model is made publicly available in the following repository: https://github.com/mmolari/affinity_maturation. The repository also includes the experimental dataset, the code to run the inference procedure and the code to reproduce the figures of the main paper (Fig. 2 to 6). Please refer to README.md file for further details.

Article and author information

Author details

  1. Marco Molari

    Laboratoire de Physique de l'École Normale Supérieure, PSL Research and CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Klaus Eyer

    Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Jean Baudry

    Laboratoire Colloides et Materiaux Divises (LCMD), Chemistry, Biology and Innovation (CBI), ESPCI, PSL Research and CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Simona Cocco

    Laboratoire de Physique Statistique, École Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1852-7789
  5. Rémi Monasson

    Laboratoire de Physique de l'École Normale Supérieure, PSL Research and CNRS, Paris, France
    For correspondence
    monasson@lpt.ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4459-0204

Funding

H2020 European Research Council (80336)

  • Klaus Eyer

Agence Nationale de la Recherche (CE30-0021-01 RBMPro)

  • Rémi Monasson

Agence Nationale de la Recherche (ANR-10-LABX-31)

  • Jean Baudry

Agence Nationale de la Recherche (ANR- 10-EQPX-34)

  • Jean Baudry

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL)

  • Jean Baudry
  • Simona Cocco
  • Rémi Monasson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments using mice were validated by the CETEA ethics committee number 89 (Institut Pasteur, Paris, France) under #2013-0103, and by the French Ministry of Research under agreement #00513.02.

Copyright

© 2020, Molari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,054
    views
  • 342
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.55678

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.