1. Biochemistry and Chemical Biology
Download icon

Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice

  1. Fanbiao Meng
  2. Minxian Qian
  3. Bin Peng
  4. Linyuan Peng
  5. Xiaohui Wang
  6. Kang Zheng
  7. Zuojun Liu
  8. Xiaolong Tang
  9. Shuju Zhang
  10. Shimin Sun
  11. Xinyue Cao
  12. Qiuxiang Pang
  13. Bosheng Zhao
  14. Wenbin Ma
  15. Zhou Songyang
  16. Bo Xu
  17. Wei-Guo Zhu
  18. Xingzhi Xu  Is a corresponding author
  19. Baohua Liu  Is a corresponding author
  1. Shenzhen University Health Science Center, China
  2. Shandong University of Technology, China
  3. Sun Yat-sen University, China
  4. Tianjin Medical University Cancer Institute and Hospital, China
Research Article
  • Cited 9
  • Views 1,780
  • Annotations
Cite this article as: eLife 2020;9:e55828 doi: 10.7554/eLife.55828

Abstract

The DNA damage response (DDR) is a highly orchestrated process but how double-strand DNA breaks (DSBs) are initially recognized is unclear. Here, we show that polymerized SIRT6 deacetylase recognizes DSBs and potentiates the DDR in human and mouse cells. First, SIRT1 deacetylates SIRT6 at residue K33, which is important for SIRT6 polymerization and mobilization toward DSBs. Then, K33-deacetylated SIRT6 anchors to γH2AX, allowing its retention on and subsequent remodeling of local chromatin. We show that a K33R mutation that mimics hypoacetylated SIRT6 can rescue defective DNA repair as a result of SIRT1 deficiency in cultured cells. These data highlight the synergistic action between SIRTs in the spatiotemporal regulation of the DDR and DNA repair in humans and mice.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Fanbiao Meng

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Minxian Qian

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1763-2325
  3. Bin Peng

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Linyuan Peng

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaohui Wang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Kang Zheng

    Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6347-4241
  7. Zuojun Liu

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiaolong Tang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4744-5846
  9. Shuju Zhang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Shimin Sun

    Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xinyue Cao

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Qiuxiang Pang

    Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Bosheng Zhao

    Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Wenbin Ma

    Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Zhou Songyang

    Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Bo Xu

    Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Wei-Guo Zhu

    Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8385-6581
  18. Xingzhi Xu

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    For correspondence
    xingzhi.xu@szu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  19. Baohua Liu

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    For correspondence
    ppliew@szu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1599-8059

Funding

National Key R&D Program of China (2017YFA0503900)

  • Wei-Guo Zhu
  • Baohua Liu

National Natural Science Foundation of China (91849208,81972602,81702909,81871114,81601215)

  • Minxian Qian
  • Zuojun Liu
  • Xiaolong Tang
  • Xingzhi Xu
  • Baohua Liu

National Natural Science Foundation of Guangdong Province (2015A030308007,2017B030301016)

  • Minxian Qian
  • Wei-Guo Zhu
  • Xingzhi Xu
  • Baohua Liu

Shenzhen Science and Technology Innovation Commission (ZDSYS20190902093401689,KQJSCX20180328093403969,JCYJ20180507182044945)

  • Baohua Liu

Tianjin Municipal Science Foundation for Youths (18JCQNJC79800)

  • Fanbiao Meng

Youth Foundation of Tianjin Medical University Cancer Institute and Hospital (B1714)

  • Fanbiao Meng

National Natural Science Foundation of China (91949124)

  • Minxian Qian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew Simon, University of Rochester, United States

Publication history

  1. Received: February 6, 2020
  2. Accepted: June 13, 2020
  3. Accepted Manuscript published: June 15, 2020 (version 1)
  4. Version of Record published: June 29, 2020 (version 2)

Copyright

© 2020, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,780
    Page views
  • 317
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Katarina Akhmetova et al.
    Research Article Updated

    Stimulator of interferon genes (STING) plays an important role in innate immunity by controlling type I interferon response against invaded pathogens. In this work, we describe a previously unknown role of STING in lipid metabolism in Drosophila. Flies with STING deletion are sensitive to starvation and oxidative stress, have reduced lipid storage, and downregulated expression of lipid metabolism genes. We found that Drosophila STING interacts with lipid synthesizing enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). ACC and FASN also interact with each other, indicating that all three proteins may be components of a large multi-enzyme complex. The deletion of Drosophila STING leads to disturbed ACC localization and decreased FASN enzyme activity. Together, our results demonstrate a previously undescribed role of STING in lipid metabolism in Drosophila.