1. Biochemistry and Chemical Biology
Download icon

Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice

  1. Fanbiao Meng
  2. Minxian Qian
  3. Bin Peng
  4. Linyuan Peng
  5. Xiaohui Wang
  6. Kang Zheng
  7. Zuojun Liu
  8. Xiaolong Tang
  9. Shuju Zhang
  10. Shimin Sun
  11. Xinyue Cao
  12. Qiuxiang Pang
  13. Bosheng Zhao
  14. Wenbin Ma
  15. Zhou Songyang
  16. Bo Xu
  17. Wei-Guo Zhu
  18. Xingzhi Xu  Is a corresponding author
  19. Baohua Liu  Is a corresponding author
  1. Shenzhen University Health Science Center, China
  2. Shandong University of Technology, China
  3. Sun Yat-sen University, China
  4. Tianjin Medical University Cancer Institute and Hospital, China
Research Article
  • Cited 1
  • Views 722
  • Annotations
Cite this article as: eLife 2020;9:e55828 doi: 10.7554/eLife.55828

Abstract

The DNA damage response (DDR) is a highly orchestrated process but how double-strand DNA breaks (DSBs) are initially recognized is unclear. Here, we show that polymerized SIRT6 deacetylase recognizes DSBs and potentiates the DDR in human and mouse cells. First, SIRT1 deacetylates SIRT6 at residue K33, which is important for SIRT6 polymerization and mobilization toward DSBs. Then, K33-deacetylated SIRT6 anchors to γH2AX, allowing its retention on and subsequent remodeling of local chromatin. We show that a K33R mutation that mimics hypoacetylated SIRT6 can rescue defective DNA repair as a result of SIRT1 deficiency in cultured cells. These data highlight the synergistic action between SIRTs in the spatiotemporal regulation of the DDR and DNA repair in humans and mice.

Article and author information

Author details

  1. Fanbiao Meng

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Minxian Qian

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1763-2325
  3. Bin Peng

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Linyuan Peng

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaohui Wang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Kang Zheng

    Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6347-4241
  7. Zuojun Liu

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiaolong Tang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4744-5846
  9. Shuju Zhang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Shimin Sun

    Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xinyue Cao

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Qiuxiang Pang

    Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Bosheng Zhao

    Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Wenbin Ma

    Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Zhou Songyang

    Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Bo Xu

    Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Wei-Guo Zhu

    Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8385-6581
  18. Xingzhi Xu

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    For correspondence
    xingzhi.xu@szu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  19. Baohua Liu

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    For correspondence
    ppliew@szu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1599-8059

Funding

National Key R&D Program of China (2017YFA0503900)

  • Wei-Guo Zhu
  • Baohua Liu

National Natural Science Foundation of China (91849208,81972602,81702909,81871114,81601215)

  • Minxian Qian
  • Zuojun Liu
  • Xiaolong Tang
  • Xingzhi Xu
  • Baohua Liu

National Natural Science Foundation of Guangdong Province (2015A030308007,2017B030301016)

  • Minxian Qian
  • Wei-Guo Zhu
  • Xingzhi Xu
  • Baohua Liu

Shenzhen Science and Technology Innovation Commission (ZDSYS20190902093401689,KQJSCX20180328093403969,JCYJ20180507182044945)

  • Baohua Liu

Tianjin Municipal Science Foundation for Youths (18JCQNJC79800)

  • Fanbiao Meng

Youth Foundation of Tianjin Medical University Cancer Institute and Hospital (B1714)

  • Fanbiao Meng

National Natural Science Foundation of China (91949124)

  • Minxian Qian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew Simon, University of Rochester, United States

Publication history

  1. Received: February 6, 2020
  2. Accepted: June 13, 2020
  3. Accepted Manuscript published: June 15, 2020 (version 1)
  4. Version of Record published: June 29, 2020 (version 2)

Copyright

© 2020, Meng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 722
    Page views
  • 189
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marie E Sweet et al.
    Research Article

    KdpFABC is an ATP-dependent K+ pump that ensures bacterial survival in K+-deficient environments. Whereas transcriptional activation of kdpFABC expression is well studied, a mechanism for down regulation when K+ levels are restored has not been described. Here we show that KdpFABC is inhibited when cells return to a K+-rich environment. The mechanism of inhibition involves phosphorylation of Ser162 on KdpB, which can be reversed in vitro by treatment with serine phosphatase. Mutating Ser162 to Alanine produces constitutive activity, whereas the phosphomimetic Ser162Asp mutation inactivates the pump. Analyses of the transport cycle show that serine phosphorylation abolishes the K+-dependence of ATP hydrolysis and blocks the catalytic cycle after formation of the aspartyl phosphate intermediate (E1~P). This regulatory mechanism is unique amongst P-type pumps and this study furthers our understanding of how bacteria control potassium homeostasis to maintain cell volume and osmotic potential.

    1. Biochemistry and Chemical Biology
    Aleksandra Bebel et al.
    Research Article

    Mobile genetic elements (MGEs) are a rich source of new enzymes, and conversely, understanding the activities of MGE-encoded proteins can elucidate MGE function. Here we biochemically characterize 3 proteins encoded by a conserved operon carried by the Staphylococcal Cassette Chromosome (SCCmec), an MGE that confers methicillin resistance to Staphylococcus aureus, creating MRSA strains. The first of these proteins, CCPol, is an active A-family DNA polymerase. The middle protein, MP, binds tightly to CCPol and confers upon it the ability to synthesize DNA primers de novo. The CCPol-MP complex is therefore a unique primase-polymerase enzyme unrelated to either known primase family. The third protein, Cch2, is a 3'-to-5' helicase. Cch2 additionally binds specifically to a dsDNA sequence downstream of its gene that is also a preferred initiation site for priming by CCPol-MP. Taken together, our results suggest that this is a functional replication module for SCCmec.