Histone deacetylase knockouts modify transcription, CAG instability and nuclear pathology in Huntington disease mice

  1. Marina Kovalenko
  2. Serkan Erdin
  3. Marissa A Andrew
  4. Jason St Claire
  5. Melissa Shaughnessey
  6. Leroy Hubert
  7. João Luís Neto
  8. Alexei Stortchevoi
  9. Daniel M Fass
  10. Ricardo Mouro Pinto
  11. Stephen J Haggarty
  12. John H Wilson
  13. Michael E Talkowski
  14. Vanessa C Wheeler  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. Massachusetts General Hospital/Broad Institute, United States
  3. Baylor College of Medicine, United States
  4. Massachusetts General Hospital, Harvard Medical School, United States

Abstract

Somatic expansion of the Huntington's disease (HD) CAG repeat drives the rate of a pathogenic process ultimately resulting in neuronal cell death. Although mechanisms of toxicity are poorly delineated, transcriptional dysregulation is a likely contributor. To identify modifiers that act at the level of CAG expansion and/or downstream pathogenic processes, we tested the impact of genetic knockout, in HttQ111 mice, of Hdac2 or Hdac3 in medium-spiny striatal neurons that exhibit extensive CAG expansion and exquisite disease vulnerability. Both knockouts moderately attenuated CAG expansion, with Hdac2 knockout decreasing nuclear huntingtin pathology. Hdac2 knockout resulted in a substantial transcriptional response that included modification of transcriptional dysregulation elicited by the HttQ111 allele, likely via mechanisms unrelated to instability suppression. Our results identify novel modifiers of different aspects of HD pathogenesis in MSNs and highlight a complex relationship between the expanded Htt allele and Hdac2 with implications for targeting transcriptional dysregulation in HD.

Data availability

RNA-Seq data is deposited in GEO, under the accession number GSE148440

The following data sets were generated

Article and author information

Author details

  1. Marina Kovalenko

    Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  2. Serkan Erdin

    Center for Genomic Medicine/Program in Medical and Population Genetics, Massachusetts General Hospital/Broad Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6587-2625
  3. Marissa A Andrew

    Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Jason St Claire

    Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Melissa Shaughnessey

    Center for Genomic Medicine; Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  6. Leroy Hubert

    Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. João Luís Neto

    Center for Genomic Medicine; Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0863-158X
  8. Alexei Stortchevoi

    Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  9. Daniel M Fass

    Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
    Competing interests
    Daniel M Fass, D.M.F. is a member of the scientific advisory board of Psy Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0018-8093
  10. Ricardo Mouro Pinto

    Center for Genomic Medicine; Department of Neurology, Massachusetts General Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  11. Stephen J Haggarty

    Chemical Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    Stephen J Haggarty, S.J.H. is a member of the scientific advisory board of Psy Therapeutics, Frequency Therapeutics and Souvien Therapeutics, and former member of the scientific advisory board of Rodin Therapeutics that is focused on HDAC2 inhibitors, none of whom were involved in the present study. S.J.H. has also received speaking or consulting fees from Amgen, AstraZeneca, Biogen, Merck, Regenacy Pharmaceuticals, as well as sponsored research or gift funding from AstraZeneca, JW Pharmaceuticals, and Vesigen unrelated to the content of this manuscript. His financial interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7872-168X
  12. John H Wilson

    Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  13. Michael E Talkowski

    Center for Genomic Medicine/Program in Medical and Population Genetics, Massachusetts General Hospital/Broad Institute, Boston, United States
    Competing interests
    No competing interests declared.
  14. Vanessa C Wheeler

    Center for Genomic Medicine; Department of Neurology, Massachusetts General Hospital, Boston, United States
    For correspondence
    wheeler@helix.mgh.harvard.edu
    Competing interests
    Vanessa C Wheeler, V.C.W is a scientific advisory board member of Triplet Therapeutics, a company developing new therapeutic approaches to address triplet repeat disorders such Huntington's disease and Myotonic Dystrophy and of LoQus23 Therapeutics. Her financial interests in Triplet Therapeutics, were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2619-589X

Funding

Huntington Society of Canada (New Pathways Research Grant)

  • Vanessa C Wheeler

National Institutes of Health (NS049206)

  • Vanessa C Wheeler

Huntington's Disease Society of America (Berman Topper Career Development Award)

  • Ricardo Mouro Pinto

National Institutes of Health (GM38219)

  • John H Wilson

National Institutes of Health (EY11731)

  • John H Wilson

National Institutes of Health (1F3HG004918)

  • Leroy Hubert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Harry T Orr, University of Minnesota, United States

Ethics

Animal experimentation: This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health under an approved protocol (2009N000216) of the Massachusetts General Hospital Subcommittee on Research Animal Care.

Version history

  1. Received: April 15, 2020
  2. Accepted: September 28, 2020
  3. Accepted Manuscript published: September 29, 2020 (version 1)
  4. Version of Record published: October 22, 2020 (version 2)

Copyright

© 2020, Kovalenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,060
    views
  • 292
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina Kovalenko
  2. Serkan Erdin
  3. Marissa A Andrew
  4. Jason St Claire
  5. Melissa Shaughnessey
  6. Leroy Hubert
  7. João Luís Neto
  8. Alexei Stortchevoi
  9. Daniel M Fass
  10. Ricardo Mouro Pinto
  11. Stephen J Haggarty
  12. John H Wilson
  13. Michael E Talkowski
  14. Vanessa C Wheeler
(2020)
Histone deacetylase knockouts modify transcription, CAG instability and nuclear pathology in Huntington disease mice
eLife 9:e55911.
https://doi.org/10.7554/eLife.55911

Share this article

https://doi.org/10.7554/eLife.55911

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Genetics and Genomics
    Pianpian Zhao, Zhifeng Sheng ... Hou-Feng Zheng
    Research Article

    The ‘diabetic bone paradox’ suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.