Self-restoration of cardiac excitation rhythm by anti-arrhythmic ion channel gating

  1. Rupamanjari Majumder
  2. Tim De Coster
  3. Nina Kudryashova
  4. Arie O Verkerk
  5. Ivan V Kazbanov
  6. Balázs Ördög
  7. Niels Harlaar
  8. Ronald Wilders
  9. Antoine A F de Vries
  10. Dirk L Ypey
  11. Alexander V Panfilov
  12. Daniel A Pijnappels  Is a corresponding author
  1. Leiden University Medical Center, Netherlands
  2. School of Informatics, The University of Edinburgh, United Kingdom
  3. Amsterdam UMC, Netherlands
  4. Ghent University, Belgium

Abstract

Homeostatic regulation protects organisms against hazardous physiological changes. However, such regulation is limited in certain organs and associated biological processes. For example, the heart fails to self-restore its normal electrical activity once disturbed, as with sustained arrhythmias. Here we present proof-of-concept of a biological self-restoring system that allows automatic detection and correction of such abnormal excitation rhythms. For the heart, its realization involves the integration of ion channels with newly designed gating properties into cardiomyocytes. This allows cardiac tissue to i) discriminate between normal rhythm and arrhythmia based on frequency-dependent gating and ii) generate an ionic current for termination of the detected arrhythmia. We show in silico, that for both human atrial and ventricular arrhythmias, activation of these channels leads to rapid and repeated restoration of normal excitation rhythm. Experimental validation is provided by injecting the designed channel current for arrhythmia termination in human atrial myocytes using dynamic clamp.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 5.

Article and author information

Author details

  1. Rupamanjari Majumder

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3851-9225
  2. Tim De Coster

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4942-9866
  3. Nina Kudryashova

    Institute for Adaptive and Neural Computation, School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Arie O Verkerk

    Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2140-834X
  5. Ivan V Kazbanov

    Deaprtment of Physics and Astronomy, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Balázs Ördög

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Niels Harlaar

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Ronald Wilders

    Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1340-0869
  9. Antoine A F de Vries

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Dirk L Ypey

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Alexander V Panfilov

    Department of Physics and Astronomy, Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  12. Daniel A Pijnappels

    Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
    For correspondence
    D.A.Pijnappels@lumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6731-4125

Funding

European Research Council (ERC starting grant 716509)

  • Daniel A Pijnappels

Netherlands Organisation for Scientific Research (NWO Vidi grant 91714336)

  • Daniel A Pijnappels

Ammodo grant

  • Daniel A Pijnappels

Netherlands Organisation for Health Research and Development (project 114022503)

  • Antoine A F de Vries

Leiden Regenerative Medicine Platform Holding (LRMPH project 8212/41235)

  • Antoine A F de Vries

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark T Nelson, University of Vermont, United States

Ethics

Human subjects: Conditional immortalization of human atrial myocytes was done with cells isolated from elective abortion material. Human tissue was obtained after individual permission using standard informed consent procedures. Experiments with these cells were performed in accordance with the national guidelines, approved by the Medical Ethical Committee of the Leiden University Medical Center (protocol P08.087), and conformed to the Declaration of Helsinki.

Version history

  1. Received: February 29, 2020
  2. Accepted: June 2, 2020
  3. Accepted Manuscript published: June 8, 2020 (version 1)
  4. Version of Record published: June 25, 2020 (version 2)

Copyright

© 2020, Majumder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,212
    views
  • 262
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rupamanjari Majumder
  2. Tim De Coster
  3. Nina Kudryashova
  4. Arie O Verkerk
  5. Ivan V Kazbanov
  6. Balázs Ördög
  7. Niels Harlaar
  8. Ronald Wilders
  9. Antoine A F de Vries
  10. Dirk L Ypey
  11. Alexander V Panfilov
  12. Daniel A Pijnappels
(2020)
Self-restoration of cardiac excitation rhythm by anti-arrhythmic ion channel gating
eLife 9:e55921.
https://doi.org/10.7554/eLife.55921

Share this article

https://doi.org/10.7554/eLife.55921

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.