The ribosomal RNA m5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans

  1. Clemens Heissenberger
  2. Jarod A Rollins
  3. Teresa L Krammer
  4. Fabian Nagelreiter
  5. Isabella Stocker
  6. Ludivine Wacheul
  7. Anton Shpylovyi
  8. Koray Tav
  9. Santina Snow
  10. Johannes Grillari
  11. Aric N Rogers
  12. Denis LJ Lafontaine
  13. Markus Schosserer  Is a corresponding author
  1. University of Natural Resources and Life Sciences, Vienna, Austria
  2. MDI Biological Laboratory, United States
  3. Université Libre de Bruxelles, Belgium

Abstract

Our knowledge about the repertoire of ribosomal RNA modifications and the enzymes responsible for installing them is constantly expanding. Previously, we reported that NSUN-5 is responsible for depositing m5C at position C2381 on the 26S rRNA in Caenorhabditis elegans. Here, we show that NSUN-1 is writing the second known 26S rRNA m5C at position C2982. Depletion of nsun-1 or nsun-5 improved thermotolerance and slightly increased locomotion at midlife, however, only soma-specific knockdown of nsun-1 extended lifespan. Moreover, soma-specific knockdown of nsun-1 reduced body size and impaired fecundity, suggesting non-cell-autonomous effects. While ribosome biogenesis and global protein synthesis were unaffected by nsun-1 depletion, translation of specific mRNAs was remodeled leading to reduced production of collagens, loss of structural integrity of the cuticle, and impaired barrier function. We conclude that loss of a single enzyme required for rRNA methylation has profound and highly specific effects on organismal development and physiology.

Data availability

The raw and processed sequencing data are available from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo) under accession GSE143618. Analyzed RNA-seq data are provided as Supplemental Data File 1-4. The R-script for analyzing RNA-seq data is provided as Supplemental Data File 5. Statistics for individual replicates of lifespan and stress-resistance experiments are reported in Table 1. Raw data of lifespan and thermotolerance assays are provided as Figure 2-source data 1.

The following data sets were generated

Article and author information

Author details

  1. Clemens Heissenberger

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Jarod A Rollins

    MDI Biological Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Teresa L Krammer

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Nagelreiter

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Isabella Stocker

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Ludivine Wacheul

    RNA Molecular Biology, Fonds de la Recherche Nationale, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Anton Shpylovyi

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Koray Tav

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Santina Snow

    MDI Biological Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Johannes Grillari

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Aric N Rogers

    MDI Biological Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Denis LJ Lafontaine

    RNA Molecular Biology, Fonds de la Recherche Nationale, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7295-6288
  13. Markus Schosserer

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    For correspondence
    markus.schosserer@boku.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2025-0739

Funding

Austrian Science Fund (P30623)

  • Markus Schosserer

Herzfelder'sche Familienstiftung (P30623)

  • Markus Schosserer

Hochschuljubiläumsstiftung der Stadt Wien (H- 327123/2018)

  • Markus Schosserer

Austrian Science Fund (I2514,W1224)

  • Johannes Grillari

National Institute of General Medical Sciences (P20GM103423,P20GM104318)

  • Jarod A Rollins
  • Aric N Rogers

Fonds De La Recherche Scientifique - FNRS

  • Denis LJ Lafontaine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Heissenberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,425
    views
  • 295
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clemens Heissenberger
  2. Jarod A Rollins
  3. Teresa L Krammer
  4. Fabian Nagelreiter
  5. Isabella Stocker
  6. Ludivine Wacheul
  7. Anton Shpylovyi
  8. Koray Tav
  9. Santina Snow
  10. Johannes Grillari
  11. Aric N Rogers
  12. Denis LJ Lafontaine
  13. Markus Schosserer
(2020)
The ribosomal RNA m5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans
eLife 9:e56205.
https://doi.org/10.7554/eLife.56205

Share this article

https://doi.org/10.7554/eLife.56205

Further reading

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.