The ribosomal RNA m5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans

  1. Clemens Heissenberger
  2. Jarod A Rollins
  3. Teresa L Krammer
  4. Fabian Nagelreiter
  5. Isabella Stocker
  6. Ludivine Wacheul
  7. Anton Shpylovyi
  8. Koray Tav
  9. Santina Snow
  10. Johannes Grillari
  11. Aric N Rogers
  12. Denis LJ Lafontaine
  13. Markus Schosserer  Is a corresponding author
  1. University of Natural Resources and Life Sciences, Vienna, Austria
  2. MDI Biological Laboratory, United States
  3. Université Libre de Bruxelles, Belgium

Abstract

Our knowledge about the repertoire of ribosomal RNA modifications and the enzymes responsible for installing them is constantly expanding. Previously, we reported that NSUN-5 is responsible for depositing m5C at position C2381 on the 26S rRNA in Caenorhabditis elegans. Here, we show that NSUN-1 is writing the second known 26S rRNA m5C at position C2982. Depletion of nsun-1 or nsun-5 improved thermotolerance and slightly increased locomotion at midlife, however, only soma-specific knockdown of nsun-1 extended lifespan. Moreover, soma-specific knockdown of nsun-1 reduced body size and impaired fecundity, suggesting non-cell-autonomous effects. While ribosome biogenesis and global protein synthesis were unaffected by nsun-1 depletion, translation of specific mRNAs was remodeled leading to reduced production of collagens, loss of structural integrity of the cuticle, and impaired barrier function. We conclude that loss of a single enzyme required for rRNA methylation has profound and highly specific effects on organismal development and physiology.

Data availability

The raw and processed sequencing data are available from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo) under accession GSE143618. Analyzed RNA-seq data are provided as Supplemental Data File 1-4. The R-script for analyzing RNA-seq data is provided as Supplemental Data File 5. Statistics for individual replicates of lifespan and stress-resistance experiments are reported in Table 1. Raw data of lifespan and thermotolerance assays are provided as Figure 2-source data 1.

The following data sets were generated

Article and author information

Author details

  1. Clemens Heissenberger

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Jarod A Rollins

    MDI Biological Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Teresa L Krammer

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Nagelreiter

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Isabella Stocker

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Ludivine Wacheul

    RNA Molecular Biology, Fonds de la Recherche Nationale, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Anton Shpylovyi

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Koray Tav

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Santina Snow

    MDI Biological Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Johannes Grillari

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Aric N Rogers

    MDI Biological Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Denis LJ Lafontaine

    RNA Molecular Biology, Fonds de la Recherche Nationale, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7295-6288
  13. Markus Schosserer

    Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
    For correspondence
    markus.schosserer@boku.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2025-0739

Funding

Austrian Science Fund (P30623)

  • Markus Schosserer

Herzfelder'sche Familienstiftung (P30623)

  • Markus Schosserer

Hochschuljubiläumsstiftung der Stadt Wien (H- 327123/2018)

  • Markus Schosserer

Austrian Science Fund (I2514,W1224)

  • Johannes Grillari

National Institute of General Medical Sciences (P20GM103423,P20GM104318)

  • Jarod A Rollins
  • Aric N Rogers

Fonds De La Recherche Scientifique - FNRS

  • Denis LJ Lafontaine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dario Riccardo Valenzano, Max Planck Institute for Biology of Ageing, Germany

Version history

  1. Received: February 20, 2020
  2. Accepted: December 7, 2020
  3. Accepted Manuscript published: December 8, 2020 (version 1)
  4. Version of Record published: December 17, 2020 (version 2)

Copyright

© 2020, Heissenberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,256
    views
  • 280
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clemens Heissenberger
  2. Jarod A Rollins
  3. Teresa L Krammer
  4. Fabian Nagelreiter
  5. Isabella Stocker
  6. Ludivine Wacheul
  7. Anton Shpylovyi
  8. Koray Tav
  9. Santina Snow
  10. Johannes Grillari
  11. Aric N Rogers
  12. Denis LJ Lafontaine
  13. Markus Schosserer
(2020)
The ribosomal RNA m5C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans
eLife 9:e56205.
https://doi.org/10.7554/eLife.56205

Share this article

https://doi.org/10.7554/eLife.56205

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.