The development of active binocular vision under normal and alternate rearing conditions

  1. Lukas Klimmasch  Is a corresponding author
  2. Johann Schneider
  3. Alexander Lelais
  4. Maria Fronius
  5. Bertram Emil Shi
  6. Jochen Triesch  Is a corresponding author
  1. Frankfurt Institute for Advanced Studies (FIAS), Germany
  2. Goethe University, Germany
  3. Hong Kong University of Science and Technology, China

Abstract

The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions with naturalistic input, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereograms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures displaying our own generated data.

The following previously published data sets were used

Article and author information

Author details

  1. Lukas Klimmasch

    Theoretical Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
    For correspondence
    klimmasch@fias.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9923-3052
  2. Johann Schneider

    Theoretical Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Lelais

    Theoretical Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Fronius

    Department of Ophthalmology, Child Vision Research Unit, Goethe University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Bertram Emil Shi

    Dept of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jochen Triesch

    Theoretical Neuroscience, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
    For correspondence
    triesch@fias.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8166-2441

Funding

German Federal Ministry of Education and Research (01GQ1414)

  • Lukas Klimmasch
  • Alexander Lelais

Gernan Federal Ministry of Education and Research (01EW1603A)

  • Lukas Klimmasch
  • Johann Schneider
  • Maria Fronius
  • Jochen Triesch

European Union's Horizon 2020 (713010)

  • Alexander Lelais

Hong Kong Research Grants Council (16244416)

  • Bertram Emil Shi

Quandt Foundation

  • Jochen Triesch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark CW van Rossum, University of Nottingham, United Kingdom

Version history

  1. Received: February 20, 2020
  2. Preprint posted: February 21, 2020 (view preprint)
  3. Accepted: August 4, 2021
  4. Accepted Manuscript published: August 17, 2021 (version 1)
  5. Version of Record published: September 16, 2021 (version 2)

Copyright

© 2021, Klimmasch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,326
    views
  • 102
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukas Klimmasch
  2. Johann Schneider
  3. Alexander Lelais
  4. Maria Fronius
  5. Bertram Emil Shi
  6. Jochen Triesch
(2021)
The development of active binocular vision under normal and alternate rearing conditions
eLife 10:e56212.
https://doi.org/10.7554/eLife.56212

Share this article

https://doi.org/10.7554/eLife.56212

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.