Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit

  1. Maggie M Shin
  2. Catarina Catela
  3. Jeremy Dasen  Is a corresponding author
  1. NYU School of Medicine, United States
  2. University of Chicago, United States

Abstract

Relay of muscle-derived sensory information to the CNS is essential for the execution of motor behavior, but how proprioceptive sensory neurons (pSNs) establish functionally appropriate connections is poorly understood. A prevailing model of sensory-motor circuit assembly is that peripheral, target-derived, cues instruct pSN identities and patterns of intraspinal connectivity. To date no known intrinsic determinants of muscle-specific pSN fates have been described in vertebrates. We show that expression of Hox transcription factors defines pSN subtypes, and these profiles are established independently of limb muscle. The Hoxc8 gene is expressed by pSNs and motor neurons (MNs) targeting distal forelimb muscles, and sensory-specific depletion of Hoxc8 in mice disrupts sensory-motor synaptic matching, without affecting pSN survival or muscle targeting. These results indicate that the diversity and central specificity of pSNs and MNs are regulated by a common set of determinants, thus linking early rostrocaudal patterning to the assembly of limb control circuits.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Maggie M Shin

    Neuroscience and Physiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Catarina Catela

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeremy Dasen

    Neuroscience and Physiology, NYU School of Medicine, New York, United States
    For correspondence
    Jeremy.Dasen@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9434-874X

Funding

National Institutes of Health (R35 NS116858)

  • Jeremy Dasen

National Institutes of Health (R01 NS097550)

  • Jeremy Dasen

National Institutes of Health (T32 NS086750)

  • Maggie M Shin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to an approved institutional animal care and use committee (IACUC) protocol (IA16-00045) of the NYU School of Medicine.

Version history

  1. Received: February 25, 2020
  2. Accepted: August 17, 2020
  3. Accepted Manuscript published: August 18, 2020 (version 1)
  4. Version of Record published: September 2, 2020 (version 2)

Copyright

© 2020, Shin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,906
    views
  • 267
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maggie M Shin
  2. Catarina Catela
  3. Jeremy Dasen
(2020)
Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit
eLife 9:e56374.
https://doi.org/10.7554/eLife.56374

Share this article

https://doi.org/10.7554/eLife.56374

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.