Ultrastructural comparison of dendritic spine morphology preserved with cryo and chemical fixation

  1. Hiromi Tamada
  2. Jerome Blanc
  3. Natalya Korogod
  4. Carl CH Petersen  Is a corresponding author
  5. Graham William Knott  Is a corresponding author
  1. Nagoya University, Japan
  2. Ecole Polytechnique Fédérale de Lausanne, Switzerland
  3. Haute École de Santé Vaud, Switzerland

Abstract

Previously we showed that cryo fixation of adult mouse brain tissue gave a truer representation of brain ultrastructure in comparison with a standard chemical fixation method (Korogod et al 2005). Extracellular space matched physiological measurements, there were larger numbers of docked vesicles and less glial coverage of synapses and blood capillaries. Here, using the same preservation approaches we compared the morphology of dendritic spines. We show that the length of the spine and the volume of its head is unchanged, however, the spine neck width is thinner by more than 30 % after cryo fixation. In addition, the weak correlation between spine neck width and head volume seen after chemical fixation was not present in cryo-fixed spines. Our data suggest that spine neck geometry is independent of the spine head volume, with cryo fixation showing enhanced spine head compartmentalization and a higher predicted electrical resistance between spine head and parent dendrite.

Data availability

All data generated during this study are included in the manuscript and the supporting files. Source data files are provided for all results. These are: Figures 1, 2, 3, 4 and 5 and Figure supplements for Figure 1 and 2.

Article and author information

Author details

  1. Hiromi Tamada

    Functional Anatomy and Neuroscience, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Jerome Blanc

    School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Natalya Korogod

    School of health sciences, Haute École de Santé Vaud, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Carl CH Petersen

    Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    carl.petersen@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3344-4495
  5. Graham William Knott

    School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    graham.knott@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-9052

Funding

Swiss National Science Foundation (31003A_182010)

  • Carl CH Petersen

Swiss National Science Foundation (31003A_170082)

  • Graham William Knott

Japanese Society for the Promotion of Science (JP17K019)

  • Hiromi Tamada

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the rules issued by the Swiss Federal Veterinary Office, under authorization 1889 issued by the 'Service de la consommation et des affaires vétérinaires' of the Canton de Vaud, Switzerland. The animals were handled according to approved institutional guidelines and under the experimentation license 1889.3 (Swiss Federal Veterinary Office).

Copyright

© 2020, Tamada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,742
    views
  • 501
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiromi Tamada
  2. Jerome Blanc
  3. Natalya Korogod
  4. Carl CH Petersen
  5. Graham William Knott
(2020)
Ultrastructural comparison of dendritic spine morphology preserved with cryo and chemical fixation
eLife 9:e56384.
https://doi.org/10.7554/eLife.56384

Share this article

https://doi.org/10.7554/eLife.56384

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.