Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei

  1. Ali Alghamdi
  2. Jane C Munday
  3. Gustavo Daniel Campagnaro
  4. Dominik Gurvic
  5. Fredrik Svensson
  6. Chinyere E Okpara
  7. Arvind Kumar
  8. Juan Quintana
  9. Maria Esther Martin Abril
  10. Patrik Milić
  11. Laura Watson
  12. Daniel Paape
  13. Luca Settimo
  14. Anna Dimitriou
  15. Joanna Wielinska
  16. Graeme Smart
  17. Laura F Anderson
  18. Christopher M Woodley
  19. Siu Pui Ying Kelly
  20. Hasan MS Ibrahim
  21. Fabian Hulpia
  22. Mohammed I Al-Salabi
  23. Anthonius A Eze
  24. Ibrahim A Teka
  25. Simon Gudin
  26. Mark Field
  27. Christophe Dardonville
  28. Richard R Tidwell
  29. Mark Carrington
  30. Paul O'Neill
  31. David W Boykin
  32. Ulrich Zachariae
  33. Harry P De Koning  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. University of Dundee, United Kingdom
  3. IOTA Pharmaceuticals Ltd, United Kingdom
  4. University of Liverpool, United Kingdom
  5. Georgia State University, United States
  6. University of Ghent, Belgium
  7. CSIC, Spain
  8. University of North Carolina at Chapel Hill, United States
  9. University of Cambridge, United Kingdom

Abstract

Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2's unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided that cover all figures and give raw data, averages, statistics etc.

Article and author information

Author details

  1. Ali Alghamdi

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jane C Munday

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gustavo Daniel Campagnaro

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6542-0485
  4. Dominik Gurvic

    2.Computational Biology Centre for Translational and Interdisciplinary Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Fredrik Svensson

    Chemoinformatics, IOTA Pharmaceuticals Ltd, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Chinyere E Okpara

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Arvind Kumar

    Chemistry Department, Georgia State University, Atalanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Juan Quintana

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Esther Martin Abril

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Patrik Milić

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Laura Watson

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Daniel Paape

    The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Luca Settimo

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Anna Dimitriou

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Joanna Wielinska

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Graeme Smart

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Laura F Anderson

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Christopher M Woodley

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Siu Pui Ying Kelly

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  20. Hasan MS Ibrahim

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  21. Fabian Hulpia

    Laboratory for Medicinal Chemistry, University of Ghent, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7470-3484
  22. Mohammed I Al-Salabi

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  23. Anthonius A Eze

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4821-1689
  24. Ibrahim A Teka

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  25. Simon Gudin

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  26. Mark Field

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  27. Christophe Dardonville

    Instituto de Química Médica, CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  28. Richard R Tidwell

    Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Mark Carrington

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6435-7266
  30. Paul O'Neill

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  31. David W Boykin

    Chemistry Department, Georgia State University, Atalanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  32. Ulrich Zachariae

    School of Life Sciences / School of Science and Engineering, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  33. Harry P De Koning

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Harry.De-Koning@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9963-1827

Funding

Medical Research Council (84733)

  • Harry P De Koning

National Institutes of Health (GM111749)

  • David W Boykin

Medical Research Council (MR/R015791/1)

  • Harry P De Koning

Scottish Universities Physics Alliance

  • Ulrich Zachariae

Albaha University, Saudi Arabia

  • Ali Alghamdi

Science Without Borders, Brazil (206385/2014-5)

  • Gustavo Daniel Campagnaro

Wellcome (204697/Z/16/Z)

  • Mark Field

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Alghamdi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,693
    views
  • 228
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ali Alghamdi
  2. Jane C Munday
  3. Gustavo Daniel Campagnaro
  4. Dominik Gurvic
  5. Fredrik Svensson
  6. Chinyere E Okpara
  7. Arvind Kumar
  8. Juan Quintana
  9. Maria Esther Martin Abril
  10. Patrik Milić
  11. Laura Watson
  12. Daniel Paape
  13. Luca Settimo
  14. Anna Dimitriou
  15. Joanna Wielinska
  16. Graeme Smart
  17. Laura F Anderson
  18. Christopher M Woodley
  19. Siu Pui Ying Kelly
  20. Hasan MS Ibrahim
  21. Fabian Hulpia
  22. Mohammed I Al-Salabi
  23. Anthonius A Eze
  24. Ibrahim A Teka
  25. Simon Gudin
  26. Mark Field
  27. Christophe Dardonville
  28. Richard R Tidwell
  29. Mark Carrington
  30. Paul O'Neill
  31. David W Boykin
  32. Ulrich Zachariae
  33. Harry P De Koning
(2020)
Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei
eLife 9:e56416.
https://doi.org/10.7554/eLife.56416

Share this article

https://doi.org/10.7554/eLife.56416

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.