Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei

  1. Ali Alghamdi
  2. Jane C Munday
  3. Gustavo Daniel Campagnaro
  4. Dominik Gurvic
  5. Fredrik Svensson
  6. Chinyere E Okpara
  7. Arvind Kumar
  8. Juan Quintana
  9. Maria Esther Martin Abril
  10. Patrik Milić
  11. Laura Watson
  12. Daniel Paape
  13. Luca Settimo
  14. Anna Dimitriou
  15. Joanna Wielinska
  16. Graeme Smart
  17. Laura F Anderson
  18. Christopher M Woodley
  19. Siu Pui Ying Kelly
  20. Hasan MS Ibrahim
  21. Fabian Hulpia
  22. Mohammed I Al-Salabi
  23. Anthonius A Eze
  24. Ibrahim A Teka
  25. Simon Gudin
  26. Mark Field
  27. Christophe Dardonville
  28. Richard R Tidwell
  29. Mark Carrington
  30. Paul O'Neill
  31. David W Boykin
  32. Ulrich Zachariae
  33. Harry P De Koning  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. University of Dundee, United Kingdom
  3. IOTA Pharmaceuticals Ltd, United Kingdom
  4. University of Liverpool, United Kingdom
  5. Georgia State University, United States
  6. University of Ghent, Belgium
  7. CSIC, Spain
  8. University of North Carolina at Chapel Hill, United States
  9. University of Cambridge, United Kingdom

Abstract

Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2's unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided that cover all figures and give raw data, averages, statistics etc.

Article and author information

Author details

  1. Ali Alghamdi

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jane C Munday

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gustavo Daniel Campagnaro

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6542-0485
  4. Dominik Gurvic

    2.Computational Biology Centre for Translational and Interdisciplinary Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Fredrik Svensson

    Chemoinformatics, IOTA Pharmaceuticals Ltd, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Chinyere E Okpara

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Arvind Kumar

    Chemistry Department, Georgia State University, Atalanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Juan Quintana

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Esther Martin Abril

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Patrik Milić

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Laura Watson

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Daniel Paape

    The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Luca Settimo

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Anna Dimitriou

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Joanna Wielinska

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Graeme Smart

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Laura F Anderson

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Christopher M Woodley

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Siu Pui Ying Kelly

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  20. Hasan MS Ibrahim

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  21. Fabian Hulpia

    Laboratory for Medicinal Chemistry, University of Ghent, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7470-3484
  22. Mohammed I Al-Salabi

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  23. Anthonius A Eze

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4821-1689
  24. Ibrahim A Teka

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  25. Simon Gudin

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  26. Mark Field

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  27. Christophe Dardonville

    Instituto de Química Médica, CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  28. Richard R Tidwell

    Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Mark Carrington

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6435-7266
  30. Paul O'Neill

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  31. David W Boykin

    Chemistry Department, Georgia State University, Atalanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  32. Ulrich Zachariae

    School of Life Sciences / School of Science and Engineering, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  33. Harry P De Koning

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Harry.De-Koning@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9963-1827

Funding

Medical Research Council (84733)

  • Harry P De Koning

National Institutes of Health (GM111749)

  • David W Boykin

Medical Research Council (MR/R015791/1)

  • Harry P De Koning

Scottish Universities Physics Alliance

  • Ulrich Zachariae

Albaha University, Saudi Arabia

  • Ali Alghamdi

Science Without Borders, Brazil (206385/2014-5)

  • Gustavo Daniel Campagnaro

Wellcome (204697/Z/16/Z)

  • Mark Field

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christine Clayton, DKFZ-ZMBH Alliance, Germany

Publication history

  1. Received: February 26, 2020
  2. Accepted: August 6, 2020
  3. Accepted Manuscript published: August 7, 2020 (version 1)
  4. Accepted Manuscript updated: August 11, 2020 (version 2)
  5. Version of Record published: September 4, 2020 (version 3)

Copyright

© 2020, Alghamdi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,390
    Page views
  • 189
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ali Alghamdi
  2. Jane C Munday
  3. Gustavo Daniel Campagnaro
  4. Dominik Gurvic
  5. Fredrik Svensson
  6. Chinyere E Okpara
  7. Arvind Kumar
  8. Juan Quintana
  9. Maria Esther Martin Abril
  10. Patrik Milić
  11. Laura Watson
  12. Daniel Paape
  13. Luca Settimo
  14. Anna Dimitriou
  15. Joanna Wielinska
  16. Graeme Smart
  17. Laura F Anderson
  18. Christopher M Woodley
  19. Siu Pui Ying Kelly
  20. Hasan MS Ibrahim
  21. Fabian Hulpia
  22. Mohammed I Al-Salabi
  23. Anthonius A Eze
  24. Ibrahim A Teka
  25. Simon Gudin
  26. Mark Field
  27. Christophe Dardonville
  28. Richard R Tidwell
  29. Mark Carrington
  30. Paul O'Neill
  31. David W Boykin
  32. Ulrich Zachariae
  33. Harry P De Koning
(2020)
Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei
eLife 9:e56416.
https://doi.org/10.7554/eLife.56416
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Jinli Geng, Yingjun Tang ... Xiaodong Liu
    Research Article Updated

    Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2–3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Radhika A Varier, Theodora Sideri ... Folkert Jacobus van Werven
    Research Article

    N6-methyladenosine (m6A) RNA modification impacts mRNA fate primarily via reader proteins, which dictate processes in development, stress, and disease. Yet little is known about m6A function in Saccharomyces cerevisiae, which occurs solely during early meiosis. Here we perform a multifaceted analysis of the m6A reader protein Pho92/Mrb1. Cross-linking immunoprecipitation analysis reveals that Pho92 associates with the 3’end of meiotic mRNAs in both an m6A-dependent and independent manner. Within cells, Pho92 transitions from the nucleus to the cytoplasm, and associates with translating ribosomes. In the nucleus Pho92 associates with target loci through its interaction with transcriptional elongator Paf1C. Functionally, we show that Pho92 promotes and links protein synthesis to mRNA decay. As such, the Pho92-mediated m6A-mRNA decay is contingent on active translation and the CCR4-NOT complex. We propose that the m6A reader Pho92 is loaded co-transcriptionally to facilitate protein synthesis and subsequent decay of m6A modified transcripts, and thereby promotes meiosis.