1. Biochemistry and Chemical Biology
  2. Microbiology and Infectious Disease
Download icon

Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei

  1. Ali Alghamdi
  2. Jane C Munday
  3. Gustavo Daniel Campagnaro
  4. Dominik Gurvic
  5. Fredrik Svensson
  6. Chinyere E Okpara
  7. Arvind Kumar
  8. Juan Quintana
  9. Maria Esther Martin Abril
  10. Patrik Milić
  11. Laura Watson
  12. Daniel Paape
  13. Luca Settimo
  14. Anna Dimitriou
  15. Joanna Wielinska
  16. Graeme Smart
  17. Laura F Anderson
  18. Christopher M Woodley
  19. Siu Pui Ying Kelly
  20. Hasan MS Ibrahim
  21. Fabian Hulpia
  22. Mohammed I Al-Salabi
  23. Anthonius A Eze
  24. Teresa Sprenger
  25. Ibrahim A Teka
  26. Simon Gudin
  27. Simone Weyand
  28. Mark C Field
  29. Christophe Dardonville
  30. Richard R Tidwell
  31. Mark Carrington
  32. Paul M O'Neill
  33. David W Boykin
  34. Ulrich Zachariae
  35. Harry P De Koning  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. University of Dundee, United Kingdom
  3. IOTA Pharmaceuticals Ltd, United Kingdom
  4. University of Liverpool, United Kingdom
  5. Georgia State University, United States
  6. University of Ghent, Belgium
  7. University of Cambridge, United Kingdom
  8. CSIC, Spain
  9. University of North Carolina at Chapel Hill, United States
Research Article
  • Cited 4
  • Views 930
  • Annotations
Cite this article as: eLife 2020;9:e56416 doi: 10.7554/eLife.56416

Abstract

Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2's unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided that cover all figures and give raw data, averages, statistics etc.

Article and author information

Author details

  1. Ali Alghamdi

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jane C Munday

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gustavo Daniel Campagnaro

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6542-0485
  4. Dominik Gurvic

    2.Computational Biology Centre for Translational and Interdisciplinary Research, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Fredrik Svensson

    Chemoinformatics, IOTA Pharmaceuticals Ltd, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Chinyere E Okpara

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Arvind Kumar

    Chemistry Department, Georgia State University, Atalanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Juan Quintana

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Maria Esther Martin Abril

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Patrik Milić

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Laura Watson

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Daniel Paape

    The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation,, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Luca Settimo

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Anna Dimitriou

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Joanna Wielinska

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Graeme Smart

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Laura F Anderson

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Christopher M Woodley

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Siu Pui Ying Kelly

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  20. Hasan MS Ibrahim

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  21. Fabian Hulpia

    Laboratory for Medicinal Chemistry, University of Ghent, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7470-3484
  22. Mohammed I Al-Salabi

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  23. Anthonius A Eze

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4821-1689
  24. Teresa Sprenger

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  25. Ibrahim A Teka

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  26. Simon Gudin

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  27. Simone Weyand

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  28. Mark C Field

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  29. Christophe Dardonville

    Instituto de Química Médica, CSIC, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  30. Richard R Tidwell

    Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  31. Mark Carrington

    Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6435-7266
  32. Paul M O'Neill

    Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  33. David W Boykin

    Chemistry Department, Georgia State University, Atalanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  34. Ulrich Zachariae

    School of Life Sciences / School of Science and Engineering, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  35. Harry P De Koning

    Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Harry.De-Koning@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9963-1827

Funding

Medical Research Council (G0701258)

  • Harry P De Koning

National Institutes of Health (GM111749)

  • David W Boykin

Medical Research Council (MR/R015791/1)

  • Harry P De Koning

Scottish Universities Physics Alliance

  • Ulrich Zachariae

Albaha University, Saudi Arabia

  • Ali Alghamdi

Science Without Borders, Brazil (206385/2014-5)

  • Gustavo Daniel Campagnaro

Wellcome (204697/Z/16/Z)

  • Mark C Field

Medical Research Council

  • Teresa Sprenger

Wellcome Trust and Royal Society (Sir Henry Dale fellowship)

  • Simone Weyand

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christine Clayton, DKFZ-ZMBH Alliance, Germany

Publication history

  1. Received: February 26, 2020
  2. Accepted: August 6, 2020
  3. Accepted Manuscript published: August 7, 2020 (version 1)
  4. Accepted Manuscript updated: August 11, 2020 (version 2)
  5. Version of Record published: September 4, 2020 (version 3)

Copyright

© 2020, Alghamdi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 930
    Page views
  • 146
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Qiang Liu et al.
    Research Article

    The multimodal sensory channel transient receptor potential vanilloid-3 (TRPV3) is expressed in epidermal keratinocytes and implicated in chronic pruritus, allergy, and inflammation-related skin disorders. Gain-of-function mutations of TRPV3 cause hair growth disorders in mice and Olmsted Syndrome in human. We here report that mouse and human TRPV3 channel is targeted by the clinical medication dyclonine that exerts a potent inhibitory effect. Accordingly, dyclonine rescued cell death caused by gain-of-function TRPV3 mutations and suppressed pruritus symptoms in vivo in mouse model. At the single-channel level, dyclonine inhibited TRPV3 open probability but not the unitary conductance. By molecular simulations and mutagenesis, we further uncovered key residues in TRPV3 pore region that could toggle the inhibitory efficiency of dyclonine. The functional and mechanistic insights obtained on dyclonine-TRPV3 interaction will help to conceive updated therapeutics for skin inflammation.

    1. Biochemistry and Chemical Biology
    Willow Coyote-Maestas, James S Fraser
    Insight

    A new way to alter the genome of bacteriophages helps produce large libraries of variants, allowing these bacteria-killing viruses to be designed to target species harmful to human health.