A mechanism for the extension and unfolding of parallel G-quadruplexes by human telomerase at single-molecule resolution

  1. Bishnu P Paudel
  2. Aaron Lavel Moye
  3. Hala Abou Assi
  4. Roberto El-Khoury
  5. Scott Cohen
  6. Jessica K Holien
  7. Monica L Birrento
  8. Siritron Samosorn
  9. Kamthorn Intharapichai
  10. Christopher G Tomlinson
  11. Marie-Paule Teulade-Fichou
  12. Carlos González
  13. Jennifer L Beck
  14. Masad J Damha
  15. Antoine M van Oijen
  16. Tracy M Bryan  Is a corresponding author
  1. University of Wollongong, Australia
  2. Children's Medical Research Institute, Australia
  3. McGill University, Canada
  4. RMIT University, Australia
  5. Srinakharinwirot University, Thailand
  6. Kyoto Institute of Technology, Japan
  7. PSL Research University, France
  8. Instituto de Química Física 'Rocasolano', Spain

Abstract

Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all summary graphs.

Article and author information

Author details

  1. Bishnu P Paudel

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3518-3882
  2. Aaron Lavel Moye

    Cell Biology Unit, Children's Medical Research Institute, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Hala Abou Assi

    Department of Chemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1087-8805
  4. Roberto El-Khoury

    Department of Chemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Scott Cohen

    Cell Biology Unit, Children's Medical Research Institute, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Jessica K Holien

    School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Monica L Birrento

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Siritron Samosorn

    Department of Chemistry, Srinakharinwirot University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  9. Kamthorn Intharapichai

    Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Christopher G Tomlinson

    Cell Biology Unit, Children's Medical Research Institute, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Marie-Paule Teulade-Fichou

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Carlos González

    Instituto de Química Física 'Rocasolano', Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  13. Jennifer L Beck

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Masad J Damha

    Department of Chemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Antoine M van Oijen

    School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1794-5161
  16. Tracy M Bryan

    Cell Biology Unit, Children's Medical Research Institute, Westmead, Australia
    For correspondence
    tbryan@cmri.org.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7990-5501

Funding

Cancer Council NSW (RG 11-07,RG 16-10)

  • Tracy M Bryan

Cancer Institute NSW

  • Aaron Lavel Moye

Australian Research Council

  • Antoine M van Oijen

Ernest and Piroska Major Foundation

  • Scott Cohen

National Science and Engineering Council

  • Masad J Damha

Centre of Excellence for Innovation in Chemistry (PERCH-CIC)

  • Siritron Samosorn

Research Unit of Natural Products and Organic Synthesis for Drug Discovery (NPOS 405/2560)

  • Siritron Samosorn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Paudel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,360
    views
  • 510
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bishnu P Paudel
  2. Aaron Lavel Moye
  3. Hala Abou Assi
  4. Roberto El-Khoury
  5. Scott Cohen
  6. Jessica K Holien
  7. Monica L Birrento
  8. Siritron Samosorn
  9. Kamthorn Intharapichai
  10. Christopher G Tomlinson
  11. Marie-Paule Teulade-Fichou
  12. Carlos González
  13. Jennifer L Beck
  14. Masad J Damha
  15. Antoine M van Oijen
  16. Tracy M Bryan
(2020)
A mechanism for the extension and unfolding of parallel G-quadruplexes by human telomerase at single-molecule resolution
eLife 9:e56428.
https://doi.org/10.7554/eLife.56428

Share this article

https://doi.org/10.7554/eLife.56428

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.