Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion

  1. Sebastian Hillringhaus
  2. Anil K Dasanna
  3. Gerhard Gompper  Is a corresponding author
  4. Dmitry A Fedosov  Is a corresponding author
  1. Forschungszentrum Juelich, Germany
  2. Forschungszentrum Jülich, Germany

Abstract

Malaria parasites invade healthy red blood cells (RBCs) during the blood stage of the disease. Even though parasites initially adhere to RBCs with a random orientation, they need to align their apex toward the membrane in order to start the invasion process. Using hydrodynamic simulations of a RBC and parasite, where both interact through discrete stochastic bonds, we show that parasite alignment is governed by the combination of RBC membrane deformability and dynamics of adhesion bonds. The stochastic nature of bond-based interactions facilitates a diffusive-like re-orientation of the parasite at the RBC membrane, while RBC deformation aids in the establishment of apex-membrane contact through partial parasite wrapping by the membrane. This bond-based model for parasite adhesion quantitatively captures alignment times measured experimentally and demonstrates that alignment times increase drastically with increasing rigidity of the RBC membrane. Our results suggest that the alignment process is mediated simply by passive parasite adhesion.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-8, including all figure supplements. Figure 1 is a model schematic, which does not contain any data.

Article and author information

Author details

  1. Sebastian Hillringhaus

    Institute of Biological Information Processing, Forschungszentrum Juelich, Juelich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0100-9368
  2. Anil K Dasanna

    Institute of Biological Information Processing, Forschungszentrum Juelich, Juelich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5960-4579
  3. Gerhard Gompper

    Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
    For correspondence
    g.gompper@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8904-0986
  4. Dmitry A Fedosov

    Institute of Biological Information Processing, Forschungszentrum Juelich, Juelich, Germany
    For correspondence
    d.fedosov@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7469-9844

Funding

The authors declare that there was no funding for this work.

Copyright

© 2020, Hillringhaus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 741
    views
  • 138
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Hillringhaus
  2. Anil K Dasanna
  3. Gerhard Gompper
  4. Dmitry A Fedosov
(2020)
Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion
eLife 9:e56500.
https://doi.org/10.7554/eLife.56500

Share this article

https://doi.org/10.7554/eLife.56500

Further reading

    1. Physics of Living Systems
    Alex James, Franca Buelow ... Ann Brower
    Short Report

    We use data from 30 countries and find that the more women in a discipline, the lower quality the research in that discipline is evaluated to be and the lower the funding success rate is. This affects men and women, and is robust to age, number of research outputs, and bibliometric measures where such data are available. Our work builds on others’ findings that women’s work is valued less, regardless of who performs that work.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Tingting Yang, Marko S Chavez ... Mohamed Y El-Naggar
    Research Article

    Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current–voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope’s nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.