1. Physics of Living Systems
Download icon

Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion

  1. Sebastian Hillringhaus
  2. Anil K Dasanna
  3. Gerhard Gompper  Is a corresponding author
  4. Dmitry A Fedosov  Is a corresponding author
  1. Forschungszentrum Juelich, Germany
  2. Forschungszentrum Jülich, Germany
Research Article
  • Cited 0
  • Views 127
  • Annotations
Cite this article as: eLife 2020;9:e56500 doi: 10.7554/eLife.56500

Abstract

Malaria parasites invade healthy red blood cells (RBCs) during the blood stage of the disease. Even though parasites initially adhere to RBCs with a random orientation, they need to align their apex toward the membrane in order to start the invasion process. Using hydrodynamic simulations of a RBC and parasite, where both interact through discrete stochastic bonds, we show that parasite alignment is governed by the combination of RBC membrane deformability and dynamics of adhesion bonds. The stochastic nature of bond-based interactions facilitates a diffusive-like re-orientation of the parasite at the RBC membrane, while RBC deformation aids in the establishment of apex-membrane contact through partial parasite wrapping by the membrane. This bond-based model for parasite adhesion quantitatively captures alignment times measured experimentally and demonstrates that alignment times increase drastically with increasing rigidity of the RBC membrane. Our results suggest that the alignment process is mediated simply by passive parasite adhesion.

Article and author information

Author details

  1. Sebastian Hillringhaus

    Institute of Biological Information Processing, Forschungszentrum Juelich, Juelich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0100-9368
  2. Anil K Dasanna

    Institute of Biological Information Processing, Forschungszentrum Juelich, Juelich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5960-4579
  3. Gerhard Gompper

    Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
    For correspondence
    g.gompper@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8904-0986
  4. Dmitry A Fedosov

    Institute of Biological Information Processing, Forschungszentrum Juelich, Juelich, Germany
    For correspondence
    d.fedosov@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7469-9844

Funding

The authors declare that there was no funding for this work.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: February 29, 2020
  2. Accepted: May 17, 2020
  3. Accepted Manuscript published: May 18, 2020 (version 1)

Copyright

© 2020, Hillringhaus et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 127
    Page views
  • 32
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Physics of Living Systems
    Antonia Franziska Eckert et al.
    Tools and Resources
    1. Physics of Living Systems
    Elizabeth R Jerison, Stephen R Quake
    Research Article