A quantitative inventory of yeast P body proteins reveals principles of composition and specificity

  1. Wenmin Xing
  2. Denise Muhlrad
  3. Roy Parker
  4. Michael K Rosen  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Howard Hughes Medical Institute, University of Colorado, United States

Abstract

P bodies are archetypal biomolecular condensates that concentrate proteins and RNA without a surrounding membrane. While dozens of P body proteins are known, the concentrations of components in the compartment have not been measured. We used live cell imaging to generate a quantitative inventory of the major proteins in yeast P bodies. Only 7 proteins are highly concentrated in P bodies (5.1-15 uM); the 24 others examined are appreciably lower (most ≤ 2.6 uM). P body concentration correlates inversely with cytoplasmic exchange rate. Sequence elements driving Dcp2 concentration into P bodies are distributed across the protein and act synergistically. Our data indicate that P bodies, and probably other condensates, are compositionally simpler than suggested by proteomic analyses, with implications for specificity, reconstitution and evolution.

Data availability

All data have been submitted to Dryad, doi:10.5061/dryad.02v6wwq0q.

The following data sets were generated

Article and author information

Author details

  1. Wenmin Xing

    Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Denise Muhlrad

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Roy Parker

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8412-4152
  4. Michael K Rosen

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    michael.rosen@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0775-7917

Funding

Howard Hughes Medical Institute

  • Wenmin Xing
  • Denise Muhlrad
  • Roy Parker
  • Michael K Rosen

Welch Foundation

  • Michael K Rosen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Xing et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,294
    views
  • 895
    downloads
  • 107
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenmin Xing
  2. Denise Muhlrad
  3. Roy Parker
  4. Michael K Rosen
(2020)
A quantitative inventory of yeast P body proteins reveals principles of composition and specificity
eLife 9:e56525.
https://doi.org/10.7554/eLife.56525

Share this article

https://doi.org/10.7554/eLife.56525

Further reading

    1. Cancer Biology
    2. Cell Biology
    Xiangning Bu, Nathanael Ashby ... Inhee Chung
    Research Article

    Cell crowding is a common microenvironmental factor influencing various disease processes, but its role in promoting cell invasiveness remains unclear. This study investigates the biomechanical changes induced by cell crowding, focusing on pro-invasive cell volume reduction in ductal carcinoma in situ (DCIS). Crowding specifically enhanced invasiveness in high-grade DCIS cells through significant volume reduction compared to hyperplasia-mimicking or normal cells. Mass spectrometry revealed that crowding selectively relocated ion channels, including TRPV4, to the plasma membrane in high-grade DCIS cells. TRPV4 inhibition triggered by crowding decreased intracellular calcium levels, reduced cell volume, and increased invasion and motility. During this process, TRPV4 membrane relocation primed the channel for later activation, compensating for calcium loss. Analyses of patient-derived breast cancer tissues confirmed that plasma membrane-associated TRPV4 is specific to high-grade DCIS and indicates the presence of a pro-invasive cell volume reduction mechanotransduction pathway. Hyperosmotic conditions and pharmacologic TRPV4 inhibition mimicked crowding-induced effects, while TRPV4 activation reversed them. Silencing TRPV4 diminished mechanotransduction in high-grade DCIS cells, reducing calcium depletion, volume reduction, and motility. This study uncovers a novel pro-invasive mechanotransduction pathway driven by cell crowding and identifies TRPV4 as a potential biomarker for predicting invasion risk in DCIS patients.

    1. Cell Biology
    Dan Wu, Venkateswararao Eeda ... Weidong Wang
    Research Article

    Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional ‘M1-like’ CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the ‘M1-like’ CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and ‘M1-like’ ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.