Miga mediated endoplasmic reticulum-mitochondria contact sites regulate neuronal homeostasis

  1. Lingna Xu
  2. Xi Wang
  3. Jia Zhou
  4. Yunyi Qiu
  5. Weina Shang
  6. Jun-Ping Liu
  7. Liquan Wang
  8. Chao Tong  Is a corresponding author
  1. Zhejiang University, China
  2. Hangzhou Normal University College of Medicine, China
  3. Zhejiang University, China

Abstract

Endoplasmic reticulum (ER)–mitochondria contact sites (ERMCSs) are crucial for multiple cellular processes such as calcium signaling, lipid transport, mitochondrial dynamics, and autophagosome biogenesis. However, the molecular organization, functions, and regulation of ERMCS are not fully understood in higher eukaryotes. Also, the physiological roles of altered ERMCSs are not well defined. In this study, we found that Miga, a mitochondrion located protein, markedly increases ERMCSs and causes severe neurodegeneration upon overexpression in fly eyes. Miga interacts with an ER protein Vap33 through its FFAT-like motif and an amyotrophic lateral sclerosis (ALS) disease related Vap33 mutation considerably reduces its interaction with Miga. Multiple serine residues inside and near the Miga FFAT motif were phosphorylated, which is required for its interaction with Vap33 and Miga mediated ERMCS formation. The interaction between Vap33 and Miga promoted further phosphorylation of upstream serine/threonine clusters, which fine-tuned Miga activity. Protein kinases CKI and CaMKII contribute to Miga hyperphosphorylation. MIGA2, encoded by the miga mammalian ortholog, has conserved functions in mammalian cells. We propose a model that shows Miga interacts with Vap33 to mediate ERMCSs and excessive ERMCSs lead to neurodegeneration.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Lingna Xu

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xi Wang

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jia Zhou

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yunyi Qiu

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Weina Shang

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun-Ping Liu

    Institute of Ageing Research, Hangzhou Normal University College of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Liquan Wang

    The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Chao Tong

    Life sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    ctong@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6521-5465

Funding

National Natural Science Foundation of China (91754103)

  • Chao Tong

National Natural Science Foundation of China (31622034)

  • Chao Tong

National Natural Science Foundation of China (31571383)

  • Chao Tong

National key research and developmental program of China (2017YFC1001100)

  • Chao Tong

National key research and developmental program of China (2017YFC1001500)

  • Chao Tong

Natural Science Foundation of Zhejiang Province (LR16C070001)

  • Chao Tong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,103
    views
  • 570
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lingna Xu
  2. Xi Wang
  3. Jia Zhou
  4. Yunyi Qiu
  5. Weina Shang
  6. Jun-Ping Liu
  7. Liquan Wang
  8. Chao Tong
(2020)
Miga mediated endoplasmic reticulum-mitochondria contact sites regulate neuronal homeostasis
eLife 9:e56584.
https://doi.org/10.7554/eLife.56584

Share this article

https://doi.org/10.7554/eLife.56584

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).