Miga mediated endoplasmic reticulum-mitochondria contact sites regulate neuronal homeostasis

  1. Lingna Xu
  2. Xi Wang
  3. Jia Zhou
  4. Yunyi Qiu
  5. Weina Shang
  6. Jun-Ping Liu
  7. Liquan Wang
  8. Chao Tong  Is a corresponding author
  1. Zhejiang University, China
  2. Hangzhou Normal University College of Medicine, China
  3. Zhejiang University, China

Abstract

Endoplasmic reticulum (ER)–mitochondria contact sites (ERMCSs) are crucial for multiple cellular processes such as calcium signaling, lipid transport, mitochondrial dynamics, and autophagosome biogenesis. However, the molecular organization, functions, and regulation of ERMCS are not fully understood in higher eukaryotes. Also, the physiological roles of altered ERMCSs are not well defined. In this study, we found that Miga, a mitochondrion located protein, markedly increases ERMCSs and causes severe neurodegeneration upon overexpression in fly eyes. Miga interacts with an ER protein Vap33 through its FFAT-like motif and an amyotrophic lateral sclerosis (ALS) disease related Vap33 mutation considerably reduces its interaction with Miga. Multiple serine residues inside and near the Miga FFAT motif were phosphorylated, which is required for its interaction with Vap33 and Miga mediated ERMCS formation. The interaction between Vap33 and Miga promoted further phosphorylation of upstream serine/threonine clusters, which fine-tuned Miga activity. Protein kinases CKI and CaMKII contribute to Miga hyperphosphorylation. MIGA2, encoded by the miga mammalian ortholog, has conserved functions in mammalian cells. We propose a model that shows Miga interacts with Vap33 to mediate ERMCSs and excessive ERMCSs lead to neurodegeneration.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Lingna Xu

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xi Wang

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jia Zhou

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yunyi Qiu

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Weina Shang

    Life sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun-Ping Liu

    Institute of Ageing Research, Hangzhou Normal University College of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Liquan Wang

    The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Chao Tong

    Life sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    ctong@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6521-5465

Funding

National Natural Science Foundation of China (91754103)

  • Chao Tong

National Natural Science Foundation of China (31622034)

  • Chao Tong

National Natural Science Foundation of China (31571383)

  • Chao Tong

National key research and developmental program of China (2017YFC1001100)

  • Chao Tong

National key research and developmental program of China (2017YFC1001500)

  • Chao Tong

Natural Science Foundation of Zhejiang Province (LR16C070001)

  • Chao Tong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Benoît Kornmann, University of Oxford, United Kingdom

Version history

  1. Received: March 3, 2020
  2. Accepted: July 9, 2020
  3. Accepted Manuscript published: July 10, 2020 (version 1)
  4. Version of Record published: July 23, 2020 (version 2)

Copyright

© 2020, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,828
    Page views
  • 543
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lingna Xu
  2. Xi Wang
  3. Jia Zhou
  4. Yunyi Qiu
  5. Weina Shang
  6. Jun-Ping Liu
  7. Liquan Wang
  8. Chao Tong
(2020)
Miga mediated endoplasmic reticulum-mitochondria contact sites regulate neuronal homeostasis
eLife 9:e56584.
https://doi.org/10.7554/eLife.56584

Share this article

https://doi.org/10.7554/eLife.56584

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.