1. Chromosomes and Gene Expression
Download icon

Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner

  1. Juan Lafuente-Barquero
  2. Maria Luisa García-Rubio
  3. Marta San Martin-Alonso
  4. Belén Gómez-González  Is a corresponding author
  5. Andrés Aguilera  Is a corresponding author
  1. Biotech Research and Innovation Centre-BRIC, University of Copenhagen, Denmark
  2. CABIMER, Universidad de Sevilla, Spain
  3. Leiden University Medical Center, Netherlands
Research Article
  • Cited 4
  • Views 1,528
  • Annotations
Cite this article as: eLife 2020;9:e56674 doi: 10.7554/eLife.56674

Abstract

DNA:RNA hybrids constitute a well-known source of recombinogenic DNA damage. The current literature is in agreement with DNA:RNA hybrids being produced co-transcriptionally by the invasion of the nascent RNA molecule produced in cis with its DNA template. However, it has also been suggested that recombinogenic DNA:RNA hybrids could be facilitated by the invasion of RNA molecules produced in trans in a Rad51-mediated reaction. Here, we tested the possibility that such DNA:RNA hybrids constitute a source of recombinogenic DNA damage taking advantage of Rad51-independent single-strand annealing (SSA) assays in the yeast Saccharomyces cerevisiae. For this, we used new constructs designed to induce expression of mRNA transcripts in trans with respect to the SSA system. We show that unscheduled and recombinogenic DNA:RNA hybrids that trigger the SSA event are formed in cis during transcription and in a Rad51-independent manner. We found no evidence that such hybrids form in trans and in a Rad51-dependent manner.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all graphs.

Article and author information

Author details

  1. Juan Lafuente-Barquero

    Department of Health and Medical Sciences, Biotech Research and Innovation Centre-BRIC, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  2. Maria Luisa García-Rubio

    Department of Molecular Biology, CABIMER, Universidad de Sevilla, Seville, Spain
    Competing interests
    No competing interests declared.
  3. Marta San Martin-Alonso

    Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  4. Belén Gómez-González

    Department of Genetics, CABIMER, Universidad de Sevilla, Sevilla, Spain
    For correspondence
    gomezb@us.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1655-8407
  5. Andrés Aguilera

    Department of Molecular Biology, CABIMER, Universidad de Sevilla, Seville, Spain
    For correspondence
    andres.aguilera@cabimer.es
    Competing interests
    Andrés Aguilera, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4782-1714

Funding

Ministerio de Economía y Competitividad (BFU2016-75058-P)

  • Andrés Aguilera

European Union

  • Andrés Aguilera

Spanish Association Against Cancer

  • Belén Gómez-González

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Publication history

  1. Received: March 5, 2020
  2. Accepted: August 3, 2020
  3. Accepted Manuscript published: August 4, 2020 (version 1)
  4. Version of Record published: August 17, 2020 (version 2)

Copyright

© 2020, Lafuente-Barquero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,528
    Page views
  • 206
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Lizhi He et al.
    Research Article Updated

    The YAP and TAZ paralogs are transcriptional co-activators recruited to target sites by TEAD proteins. Here, we show that YAP and TAZ are also recruited by JUNB (a member of the AP-1 family) and STAT3, key transcription factors that mediate an epigenetic switch linking inflammation to cellular transformation. YAP and TAZ directly interact with JUNB and STAT3 via a WW domain important for transformation, and they stimulate transcriptional activation by AP-1 proteins. JUNB, STAT3, and TEAD co-localize at virtually all YAP/TAZ target sites, yet many target sites only contain individual AP-1, TEAD, or STAT3 motifs. This observation and differences in relative crosslinking efficiencies of JUNB, TEAD, and STAT3 at YAP/TAZ target sites suggest that YAP/TAZ is recruited by different forms of an AP-1/STAT3/TEAD complex depending on the recruiting motif. The different classes of YAP/TAZ target sites are associated with largely non-overlapping genes with distinct functions. A small minority of target sites are YAP- or TAZ-specific, and they are associated with different sequence motifs and gene classes from shared YAP/TAZ target sites. Genes containing either the AP-1 or TEAD class of YAP/TAZ sites are associated with poor survival of breast cancer patients with the triple-negative form of the disease.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Natalia Petrenko, Kevin Struhl
    Research Article Updated

    The preinitiation complex (PIC) for transcriptional initiation by RNA polymerase (Pol) II is composed of general transcription factors that are highly conserved. However, analysis of ChIP-seq datasets reveals kinetic and compositional differences in the transcriptional initiation process among eukaryotic species. In yeast, Mediator associates strongly with activator proteins bound to enhancers, but it transiently associates with promoters in a form that lacks the kinase module. In contrast, in human, mouse, and fly cells, Mediator with its kinase module stably associates with promoters, but not with activator-binding sites. This suggests that yeast and metazoans differ in the nature of the dynamic bridge of Mediator between activators and Pol II and the composition of a stable inactive PIC-like entity. As in yeast, occupancies of TATA-binding protein (TBP) and TBP-associated factors (Tafs) at mammalian promoters are not strictly correlated. This suggests that within PICs, TFIID is not a monolithic entity, and multiple forms of TBP affect initiation at different classes of genes. TFIID in flies, but not yeast and mammals, interacts strongly at regions downstream of the initiation site, consistent with the importance of downstream promoter elements in that species. Lastly, Taf7 and the mammalian-specific Med26 subunit of Mediator also interact near the Pol II pause region downstream of the PIC, but only in subsets of genes and often not together. Species-specific differences in PIC structure and function are likely to affect how activators and repressors affect transcriptional activity.