Abstract

Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family. We describe a tomato gene cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene cluster and found that its phylogenetic distribution correlates with medium chain acylsugar accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.

Data availability

The RNA-seq reads were deposited in the National Center for Biotechnology Information Sequence Read Archive under the accession number PRJNA605501. Sequence data used in this study are in the GenBank/EMBL data libraries under these accession numbers: Sl-AACS1(MT078737), Sl-AECH1(MT078736), Sp-AACS1(MT078735), Sp-AECH1(MT078734), Sq-AACS1(MT078732), Sq-AECH1(MT078731), Sq_c35719 (MT078733). The following materials require a material transfer agreement: pEAQ-HT, pK7WG, pKGWFS7, pEarleyGate102, pEarleyGate104, pTRV2-LIC, pICH47742::2x35S-5'UTR-hCas9(STOP)-NOST, pICH41780, pAGM4723, and pICSL11024.

The following data sets were generated

Article and author information

Author details

  1. Pengxiang Fan

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peipei Wang

    Plant BIology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yann-Ru Lou

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bryan J Leong

    Department of Plant Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4042-1160
  5. Bethany M Moore

    Plant Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Craig A Schenck

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5711-7213
  7. Rachel Combs

    Translational Plant Sciences, Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6626-0903
  8. Pengfei Cao

    MSU-DOE Plant Research Lab, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6998-9302
  9. Federica Brandizzi

    MSU-DOE Plant Research Lab, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0580-8888
  10. Shin-Han Shiu

    Plant BIology, Computational Mathematics Science and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert L Last

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    For correspondence
    lastr@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6974-9587

Funding

National Science Foundation (1546617)

  • Shin-Han Shiu
  • Robert L Last

National Science Foundation (1655386)

  • Shin-Han Shiu

U.S. Department of Energy (BER DE-SC0018409)

  • Shin-Han Shiu

National Science Foundation (1727362)

  • Federica Brandizzi

National Institutes of Health (GM110523)

  • Bryan J Leong
  • Robert L Last

National Science Foundation (1757043)

  • Rachel Combs
  • Robert L Last

National Science Foundation (1811055)

  • Craig A Schenck

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,858
    views
  • 806
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengxiang Fan
  2. Peipei Wang
  3. Yann-Ru Lou
  4. Bryan J Leong
  5. Bethany M Moore
  6. Craig A Schenck
  7. Rachel Combs
  8. Pengfei Cao
  9. Federica Brandizzi
  10. Shin-Han Shiu
  11. Robert L Last
(2020)
Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity
eLife 9:e56717.
https://doi.org/10.7554/eLife.56717

Share this article

https://doi.org/10.7554/eLife.56717

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.