Abstract

Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family. We describe a tomato gene cluster on chromosome 7 involved in medium chain acylsugar accumulation due to trichome specific acyl-CoA synthetase and enoyl-CoA hydratase genes. This cluster co-localizes with a tomato steroidal alkaloid gene cluster and is syntenic to a chromosome 12 region containing another acylsugar pathway gene. We reconstructed the evolutionary events leading to this gene cluster and found that its phylogenetic distribution correlates with medium chain acylsugar accumulation across the Solanaceae. This work reveals insights into the dynamics behind gene cluster evolution and cell-type specific metabolite diversity.

Data availability

The RNA-seq reads were deposited in the National Center for Biotechnology Information Sequence Read Archive under the accession number PRJNA605501. Sequence data used in this study are in the GenBank/EMBL data libraries under these accession numbers: Sl-AACS1(MT078737), Sl-AECH1(MT078736), Sp-AACS1(MT078735), Sp-AECH1(MT078734), Sq-AACS1(MT078732), Sq-AECH1(MT078731), Sq_c35719 (MT078733). The following materials require a material transfer agreement: pEAQ-HT, pK7WG, pKGWFS7, pEarleyGate102, pEarleyGate104, pTRV2-LIC, pICH47742::2x35S-5'UTR-hCas9(STOP)-NOST, pICH41780, pAGM4723, and pICSL11024.

The following data sets were generated

Article and author information

Author details

  1. Pengxiang Fan

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peipei Wang

    Plant BIology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yann-Ru Lou

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bryan J Leong

    Department of Plant Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4042-1160
  5. Bethany M Moore

    Plant Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Craig A Schenck

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5711-7213
  7. Rachel Combs

    Translational Plant Sciences, Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6626-0903
  8. Pengfei Cao

    MSU-DOE Plant Research Lab, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6998-9302
  9. Federica Brandizzi

    MSU-DOE Plant Research Lab, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0580-8888
  10. Shin-Han Shiu

    Plant BIology, Computational Mathematics Science and Engineering, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert L Last

    Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
    For correspondence
    lastr@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6974-9587

Funding

National Science Foundation (1546617)

  • Shin-Han Shiu
  • Robert L Last

National Science Foundation (1655386)

  • Shin-Han Shiu

U.S. Department of Energy (BER DE-SC0018409)

  • Shin-Han Shiu

National Science Foundation (1727362)

  • Federica Brandizzi

National Institutes of Health (GM110523)

  • Bryan J Leong
  • Robert L Last

National Science Foundation (1757043)

  • Rachel Combs
  • Robert L Last

National Science Foundation (1811055)

  • Craig A Schenck

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,992
    views
  • 818
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengxiang Fan
  2. Peipei Wang
  3. Yann-Ru Lou
  4. Bryan J Leong
  5. Bethany M Moore
  6. Craig A Schenck
  7. Rachel Combs
  8. Pengfei Cao
  9. Federica Brandizzi
  10. Shin-Han Shiu
  11. Robert L Last
(2020)
Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity
eLife 9:e56717.
https://doi.org/10.7554/eLife.56717

Share this article

https://doi.org/10.7554/eLife.56717

Further reading

    1. Biochemistry and Chemical Biology
    Adrian CD Fuchs
    Research Article

    The protein ligase Connectase can be used to fuse proteins to small molecules, solid carriers, or other proteins. Compared to other protein ligases, it offers greater substrate specificity, higher catalytic efficiency, and catalyzes no side reactions. However, its reaction is reversible, resulting in only 50% fusion product from two equally abundant educts. Here, we present a simple method to reliably obtain 100% fusion product in 1:1 conjugation reactions. This method is efficient for protein-protein or protein-peptide fusions at the N- or C-termini. It enables the generation of defined and completely labeled antibody conjugates with one fusion partner on each chain. The reaction requires short incubation times with small amounts of enzyme and is effective even at low substrate concentrations and at low temperatures. With these characteristics, it presents a valuable new tool for bioengineering.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.