Antinociceptive modulation by the adhesion GPCR CIRL promotes mechanosensory signal discrimination

  1. Sven Dannhäuser
  2. Thomas J Lux
  3. Chun Hu
  4. Mareike Selcho
  5. Jeremy T-C Chen
  6. Nadine Ehmann
  7. Divya Sachidanandan
  8. Sarah Stopp
  9. Dennis Pauls
  10. Matthias Pawlak
  11. Tobias Langenhan
  12. Peter Soba
  13. Heike L Rittner  Is a corresponding author
  14. Robert J Kittel  Is a corresponding author
  1. Leipzig University, Germany
  2. University Hospital Würzburg, Germany
  3. University of Hamburg, Germany
  4. University of Würzburg, Germany
  5. University Hopsitals of Wuerzburg, Germany

Abstract

Adhesion-type GPCRs (aGPCRs) participate in a vast range of physiological processes. Their frequent association with mechanosensitive functions suggests that processing of mechanical stimuli may be a common feature of this receptor family. Previously, we reported that the Drosophila aGPCR CIRL sensitizes sensory responses to gentle touch and sound by amplifying signal transduction in low-threshold mechanoreceptors (Scholz et al., 2017). Here, we show that Cirl is also expressed in high-threshold mechanical nociceptors where it adjusts nocifensive behaviour under physiological and pathological conditions. Optogenetic in vivo experiments indicate that CIRL lowers cAMP levels in both mechanosensory submodalities. However, contrasting its role in touch-sensitive neurons, CIRL dampens the response of nociceptors to mechanical stimulation. Consistent with this finding, rat nociceptors display decreased Cirl1 expression during allodynia. Thus, cAMP-downregulation by CIRL exerts opposing effects on low-threshold mechanosensors and high-threshold nociceptors. This intriguing bipolar action facilitates the separation of mechanosensory signals carrying different physiological information.

Data availability

The presented data are summarized in Tables 1-3.

Article and author information

Author details

  1. Sven Dannhäuser

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas J Lux

    Center for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1049-9872
  3. Chun Hu

    Center for Molecular Neurobiology, University Medical Campus, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Mareike Selcho

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeremy T-C Chen

    Center for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadine Ehmann

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Divya Sachidanandan

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8219-8177
  8. Sarah Stopp

    Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Dennis Pauls

    Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthias Pawlak

    Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Tobias Langenhan

    Rudolf-Schönheimer-Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9061-3809
  12. Peter Soba

    Center for Molecular Neurobiology, University Medical Campus, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Heike L Rittner

    Anesthsiology, University Hopsitals of Wuerzburg, Wuerzburg, Germany
    For correspondence
    rittner_h@ukw.de
    Competing interests
    The authors declare that no competing interests exist.
  14. Robert J Kittel

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    For correspondence
    rjkittel@me.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9199-4826

Funding

Deutsche Forschungsgemeinschaft (PA3241/2-1)

  • Mareike Selcho

Deutsche Forschungsgemeinschaft (RI817/13-1)

  • Heike L Rittner

Deutsche Forschungsgemeinschaft (FOR 2149/P03,TRR 166/B04,KI1460/4-1,KI1460/5-1)

  • Robert J Kittel

Deutsche Forschungsgemeinschaft (SPP 1926/SO1337/2-2,SO1337/4-1)

  • Peter Soba

Deutsche Forschungsgemeinschaft (FOR 2149/P01 and P03)

  • Tobias Langenhan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and protocols were performed in accordance with international guidelines for the care and use of laboratory animals (EU Directive 2010/63/EU for animal experiments) and were approved by the Government of Unterfranken (protocol numbers 2-733 and 2-264).

Copyright

© 2020, Dannhäuser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,028
    views
  • 288
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sven Dannhäuser
  2. Thomas J Lux
  3. Chun Hu
  4. Mareike Selcho
  5. Jeremy T-C Chen
  6. Nadine Ehmann
  7. Divya Sachidanandan
  8. Sarah Stopp
  9. Dennis Pauls
  10. Matthias Pawlak
  11. Tobias Langenhan
  12. Peter Soba
  13. Heike L Rittner
  14. Robert J Kittel
(2020)
Antinociceptive modulation by the adhesion GPCR CIRL promotes mechanosensory signal discrimination
eLife 9:e56738.
https://doi.org/10.7554/eLife.56738

Share this article

https://doi.org/10.7554/eLife.56738

Further reading

    1. Neuroscience
    Frederick Federer, Justin Balsor ... Alessandra Angelucci
    Research Article

    In the mammalian neocortex, inhibition is important for dynamically balancing excitation and shaping the response properties of cells and circuits. The various computational functions of inhibition are thought to be mediated by different inhibitory neuron types, of which a large diversity exists in several species. Current understanding of the function and connectivity of distinct inhibitory neuron types has mainly derived from studies in transgenic mice. However, it is unknown whether knowledge gained from mouse studies applies to the non-human primate, the model system closest to humans. The lack of viral tools to selectively access inhibitory neuron types has been a major impediment to studying their function in the primate. Here, we have thoroughly validated and characterized several recently developed viral vectors designed to restrict transgene expression to GABAergic cells or their parvalbumin (PV) subtype, and identified two types that show high specificity and efficiency in marmoset V1. We show that in marmoset V1, AAV-h56D induces transgene expression in GABAergic cells with up to 91–94% specificity and 79% efficiency, but this depends on viral serotype and cortical layer. AAV-PHP.eB-S5E2 induces transgene expression in PV cells across all cortical layers with up to 98% specificity and 86–90% efficiency, depending on layer. Thus, these viral vectors are promising tools for studying GABA and PV cell function and connectivity in the primate cortex.

    1. Neuroscience
    Luis Alberto Bezares Calderón, Réza Shahidi, Gáspár Jékely
    Research Article

    Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.