Antinociceptive modulation by the adhesion GPCR CIRL promotes mechanosensory signal discrimination

  1. Sven Dannhäuser
  2. Thomas J Lux
  3. Chun Hu
  4. Mareike Selcho
  5. Jeremy T-C Chen
  6. Nadine Ehmann
  7. Divya Sachidanandan
  8. Sarah Stopp
  9. Dennis Pauls
  10. Matthias Pawlak
  11. Tobias Langenhan
  12. Peter Soba
  13. Heike L Rittner  Is a corresponding author
  14. Robert J Kittel  Is a corresponding author
  1. Leipzig University, Germany
  2. University Hospital Würzburg, Germany
  3. University of Hamburg, Germany
  4. University of Würzburg, Germany
  5. University Hopsitals of Wuerzburg, Germany

Abstract

Adhesion-type GPCRs (aGPCRs) participate in a vast range of physiological processes. Their frequent association with mechanosensitive functions suggests that processing of mechanical stimuli may be a common feature of this receptor family. Previously, we reported that the Drosophila aGPCR CIRL sensitizes sensory responses to gentle touch and sound by amplifying signal transduction in low-threshold mechanoreceptors (Scholz et al., 2017). Here, we show that Cirl is also expressed in high-threshold mechanical nociceptors where it adjusts nocifensive behaviour under physiological and pathological conditions. Optogenetic in vivo experiments indicate that CIRL lowers cAMP levels in both mechanosensory submodalities. However, contrasting its role in touch-sensitive neurons, CIRL dampens the response of nociceptors to mechanical stimulation. Consistent with this finding, rat nociceptors display decreased Cirl1 expression during allodynia. Thus, cAMP-downregulation by CIRL exerts opposing effects on low-threshold mechanosensors and high-threshold nociceptors. This intriguing bipolar action facilitates the separation of mechanosensory signals carrying different physiological information.

Data availability

The presented data are summarized in Tables 1-3.

Article and author information

Author details

  1. Sven Dannhäuser

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas J Lux

    Center for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1049-9872
  3. Chun Hu

    Center for Molecular Neurobiology, University Medical Campus, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Mareike Selcho

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeremy T-C Chen

    Center for Interdisciplinary Pain Medicine, Department of Anaesthesiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadine Ehmann

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Divya Sachidanandan

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8219-8177
  8. Sarah Stopp

    Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Dennis Pauls

    Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthias Pawlak

    Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Tobias Langenhan

    Rudolf-Schönheimer-Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9061-3809
  12. Peter Soba

    Center for Molecular Neurobiology, University Medical Campus, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Heike L Rittner

    Anesthsiology, University Hopsitals of Wuerzburg, Wuerzburg, Germany
    For correspondence
    rittner_h@ukw.de
    Competing interests
    The authors declare that no competing interests exist.
  14. Robert J Kittel

    Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig, Germany
    For correspondence
    rjkittel@me.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9199-4826

Funding

Deutsche Forschungsgemeinschaft (PA3241/2-1)

  • Mareike Selcho

Deutsche Forschungsgemeinschaft (RI817/13-1)

  • Heike L Rittner

Deutsche Forschungsgemeinschaft (FOR 2149/P03,TRR 166/B04,KI1460/4-1,KI1460/5-1)

  • Robert J Kittel

Deutsche Forschungsgemeinschaft (SPP 1926/SO1337/2-2,SO1337/4-1)

  • Peter Soba

Deutsche Forschungsgemeinschaft (FOR 2149/P01 and P03)

  • Tobias Langenhan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and protocols were performed in accordance with international guidelines for the care and use of laboratory animals (EU Directive 2010/63/EU for animal experiments) and were approved by the Government of Unterfranken (protocol numbers 2-733 and 2-264).

Copyright

© 2020, Dannhäuser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,152
    views
  • 294
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sven Dannhäuser
  2. Thomas J Lux
  3. Chun Hu
  4. Mareike Selcho
  5. Jeremy T-C Chen
  6. Nadine Ehmann
  7. Divya Sachidanandan
  8. Sarah Stopp
  9. Dennis Pauls
  10. Matthias Pawlak
  11. Tobias Langenhan
  12. Peter Soba
  13. Heike L Rittner
  14. Robert J Kittel
(2020)
Antinociceptive modulation by the adhesion GPCR CIRL promotes mechanosensory signal discrimination
eLife 9:e56738.
https://doi.org/10.7554/eLife.56738

Share this article

https://doi.org/10.7554/eLife.56738

Further reading

    1. Neuroscience
    Cameron T Ellis, Tristan S Yates ... Nicholas Turk-Browne
    Research Article

    Studying infant minds with movies is a promising way to increase engagement relative to traditional tasks. However, the spatial specificity and functional significance of movie-evoked activity in infants remains unclear. Here, we investigated what movies can reveal about the organization of the infant visual system. We collected fMRI data from 15 awake infants and toddlers aged 5–23 months who attentively watched a movie. The activity evoked by the movie reflected the functional profile of visual areas. Namely, homotopic areas from the two hemispheres responded similarly to the movie, whereas distinct areas responded dissimilarly, especially across dorsal and ventral visual cortex. Moreover, visual maps that typically require time-intensive and complicated retinotopic mapping could be predicted, albeit imprecisely, from movie-evoked activity in both data-driven analyses (i.e. independent component analysis) at the individual level and by using functional alignment into a common low-dimensional embedding to generalize across participants. These results suggest that the infant visual system is already structured to process dynamic, naturalistic information and that fine-grained cortical organization can be discovered from movie data.

    1. Neuroscience
    Diellor Basha, Amirmohammad Azarmehri ... Igor Timofeev
    Research Article

    Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.