Abstract

Diabetes mellitus is a known susceptibility factor for severe influenza virus infections. However, the mechanisms that underlie this susceptibility remain incompletely understood. Here, the effects of high glucose levels on influenza severity were investigated using an in vitro model of the pulmonary epithelial-endothelial barrier as well as an in vivo murine model of type II diabetes. In vitro we show that high glucose conditions prior to IAV infection increased virus-induced barrier damage. This was associated with an increased pro-inflammatory response in endothelial cells and the subsequent damage of the epithelial junctional complex. These results were subsequently validated in vivo. This study provides the first evidence that hyperglycaemia may increase influenza severity by damaging the pulmonary epithelial-endothelial barrier and increasing pulmonary oedema. These data suggest that maintaining long-term glucose control in individuals with diabetes is paramount in reducing the morbidity and mortality associated with influenza virus infections.

Data availability

RNA sequencing data generated in this study are available on the Gene Expression Omnibus repository with accession number GSE145232.

The following data sets were generated

Article and author information

Author details

  1. Katina Dee Hulme

    SCMB, University of Queensland, St Lucia, Australia
    For correspondence
    k.hulme@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1322-0136
  2. Limin Yan

    SCMB, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Rebecca J Marshall

    SCMB, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Conor J Bloxham

    SBMS, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyle R Upton

    SCMB, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Sumaira Z Hasnain

    Mater Research Institute, Translational Research Institute, Woolloongabba, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Helle Bielefeldt-Ohmann

    SCMB, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhixuan Loh

    School of Biomedical Science, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Katharina Ronacher

    Mater Research Institute, Translational Research Institute, Woolloongabba, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Keng Yih Chew

    SCMB, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Linda A Gallo

    Mater Research Institute, Translational Research Institute, Woolloongabba, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Kirsty Renfree Short

    SCMB, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4963-6184

Funding

National Health and Medical Research Council ((APP1159959)

  • Kirsty Renfree Short

National Health and Medical Research Council

  • Linda A Gallo

National Health and Medical Research Council (DE180100512)

  • Kyle R Upton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the University of Queensland Animal Ethics Committee. (permit no. 071/17).

Copyright

© 2020, Hulme et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,108
    views
  • 257
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katina Dee Hulme
  2. Limin Yan
  3. Rebecca J Marshall
  4. Conor J Bloxham
  5. Kyle R Upton
  6. Sumaira Z Hasnain
  7. Helle Bielefeldt-Ohmann
  8. Zhixuan Loh
  9. Katharina Ronacher
  10. Keng Yih Chew
  11. Linda A Gallo
  12. Kirsty Renfree Short
(2020)
High glucose levels increase influenza-associated damage to the pulmonary epithelial-endothelial barrier
eLife 9:e56907.
https://doi.org/10.7554/eLife.56907

Share this article

https://doi.org/10.7554/eLife.56907

Further reading

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.