A large effective population size for established within-host influenza virus infection

  1. Casper K Lumby
  2. Lei Zhao
  3. Judith Breuer
  4. Christopher J R Illingworth  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University College London, United Kingdom

Abstract

Strains of the influenza virus form coherent global populations, yet exist at the level of single infections in individual hosts. The relationship between these scales is a critical topic for understanding viral evolution. Here we investigate the within-host relationship between selection and the stochastic effects of genetic drift, estimating an effective population size of infection Ne for influenza infection. Examining whole-genome sequence data describing a chronic case of influenza B in a severely immunocompromised child we infer an Ne of 2.5 x 107 (95% confidence range 1.0 x 107 to 9.0 x 107) suggesting that genetic drift is of minimal importance during an established influenza infection. Our result, supported by data from influenza A infection, suggests that positive selection during within-host infection is primarily limited by the typically short period of infection. Atypically long infections may have a disproportionate influence upon global patterns of viral evolution.

Data availability

All sequence data is taken from previous publications, and is available from the Sequence Read Archive. Where this is sensible, raw data underlying figures has been made available in files which accompany this document.

The following previously published data sets were used

Article and author information

Author details

  1. Casper K Lumby

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8329-9228
  2. Lei Zhao

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Judith Breuer

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher J R Illingworth

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    cjri2@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0030-2784

Funding

Wellcome (101239/Z/13/Z)

  • Christopher J R Illingworth

Wellcome (101239/Z/13/A)

  • Christopher J R Illingworth

Wellcome (105365/Z/14/Z)

  • Casper K Lumby

Isaac Newton Trust

  • Christopher J R Illingworth

Helsingin Yliopisto

  • Christopher J R Illingworth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Lumby et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,474
    views
  • 229
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Casper K Lumby
  2. Lei Zhao
  3. Judith Breuer
  4. Christopher J R Illingworth
(2020)
A large effective population size for established within-host influenza virus infection
eLife 9:e56915.
https://doi.org/10.7554/eLife.56915

Share this article

https://doi.org/10.7554/eLife.56915

Further reading

    1. Evolutionary Biology
    Matthew Osmond, Graham Coop
    Research Article

    Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation by distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60km2 per generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.

    1. Cancer Biology
    2. Evolutionary Biology
    Arman Angaji, Michel Owusu ... Johannes Berg
    Research Article

    In growing cell populations such as tumours, mutations can serve as markers that allow tracking the past evolution from current samples. The genomic analyses of bulk samples and samples from multiple regions have shed light on the evolutionary forces acting on tumours. However, little is known empirically on the spatio-temporal dynamics of tumour evolution. Here, we leverage published data from resected hepatocellular carcinomas, each with several hundred samples taken in two and three dimensions. Using spatial metrics of evolution, we find that tumour cells grow predominantly uniformly within the tumour volume instead of at the surface. We determine how mutations and cells are dispersed throughout the tumour and how cell death contributes to the overall tumour growth. Our methods shed light on the early evolution of tumours in vivo and can be applied to high-resolution data in the emerging field of spatial biology.