1. Immunology and Inflammation
Download icon

Critical role of WNK1 in MYC-dependent early mouse thymocyte development

  1. Robert Köchl  Is a corresponding author
  2. Lesley Vanes
  3. Miriam Llorian Sopena
  4. Probir Chakravarty
  5. Harald Hartweger
  6. Kathryn Fountain
  7. Andrea White
  8. Jennifer Cowan
  9. Graham Anderson
  10. Victor LJ Tybulewicz  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. University of Birmingham, United Kingdom
Research Article
  • Cited 0
  • Views 111
  • Annotations
Cite this article as: eLife 2020;9:e56934 doi: 10.7554/eLife.56934

Abstract

WNK1, a kinase that controls kidney salt homeostasis, also regulates adhesion and migration in CD4+ T cells. Wnk1 is highly expressed in thymocytes, and since migration is important for thymocyte maturation, we investigated a role for WNK1 in mouse thymocyte development. We find that WNK1 is required for the transition of double negative (DN) thymocytes through the b-selection checkpoint and subsequent proliferation and differentiation into double positive (DP) thymocytes. Furthermore, we show that WNK1 negatively regulates LFA1-mediated adhesion and positively regulates CXCL12-induced migration in DN thymocytes. Despite this, migration defects of WNK1-deficient thymocytes do not account for the developmental arrest. Instead, we show that in DN thymocytes WNK1 transduces pre-TCR signals via OXSR1 and STK39 kinases and the SLC12A2 ion co-transporter that are required for post-transcriptional upregulation of MYC and subsequent proliferation and differentiation into DP thymocytes. Thus, a pathway regulating ion homeostasis is a critical regulator of thymocyte development.

Article and author information

Author details

  1. Robert Köchl

    Immune Cell Biology, The Francis Crick Institute, London, United Kingdom
    For correspondence
    Robert.Koechl@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Lesley Vanes

    Immune Cell Biology, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Miriam Llorian Sopena

    Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Probir Chakravarty

    Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Harald Hartweger

    Immune Cell Biology, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathryn Fountain

    Immune Cell Biology, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrea White

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer Cowan

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Graham Anderson

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Victor LJ Tybulewicz

    Immune Cell Biology, The Francis Crick Institute, London, United Kingdom
    For correspondence
    Victor.T@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2439-0798

Funding

Medical Research Council (U117527252)

  • Victor LJ Tybulewicz

Francis Crick Institute (FC001194)

  • Victor LJ Tybulewicz

Medical Research Council (FC001194)

  • Victor LJ Tybulewicz

Wellcome Trust (FC001194)

  • Victor LJ Tybulewicz

Cancer Research UK (FC001194)

  • Victor LJ Tybulewicz

Biotechnology and Biological Sciences Research Council (BB/L00805X/1)

  • Victor LJ Tybulewicz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out under the authority of a Project Licence granted by the UK Home Office (PPL70/8843).

Reviewing Editor

  1. Bernard Malissen, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, France

Publication history

  1. Received: March 15, 2020
  2. Accepted: October 13, 2020
  3. Accepted Manuscript published: October 14, 2020 (version 1)

Copyright

© 2020, Köchl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 111
    Page views
  • 14
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Stem Cells and Regenerative Medicine
    Laura Alonso-Herranz et al.
    Research Article

    Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here, we demonstrated that cardiac Mφs increased expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFβ1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.

    1. Immunology and Inflammation
    2. Physics of Living Systems
    Aby Joseph et al.
    Research Advance

    Our recent work characterized the movement of single blood cells within the retinal vasculature (Joseph et al. 2019) using adaptive optics ophthalmoscopy. Here, we apply this technique to the context of acute inflammation and discover both infiltrating and tissue-resident immune cells to be visible without any labeling in the living mouse retina using near-infrared light alone. Intravital imaging of immune cells can be negatively impacted by surgical manipulation, exogenous dyes, transgenic manipulation and phototoxicity. These confounds are now overcome, using phase contrast and time-lapse videography to reveal the dynamic behavior of myeloid cells as they interact, extravasate and survey the mouse retina. Cellular motility and differential vascular responses were measured noninvasively and in vivo across hours to months at the same retinal location, from initiation to the resolution of inflammation. As comparable systems are already available for clinical research, this approach could be readily translated to human application.