Flexible motor sequence generation during stereotyped escape responses

  1. Yuan Wang
  2. Xiaoqian Zhang
  3. Qi Xin
  4. Wesley Hung
  5. Jeremy Florman
  6. Jing Huo
  7. Tianqi Xu
  8. Yu Xie
  9. Mark J Alkema
  10. Mei Zhen
  11. Quan Wen  Is a corresponding author
  1. University of Science and Technology of China, China
  2. Mount Sinai Hospital, Canada
  3. University of Massachusetts Medical School, United States
  4. University of Toronto, Canada

Abstract

Complex animal behaviors arise from a flexible combination of stereotyped motor primitives. Here we use the escape responses of the nematode Caenorhabditis elegans to study how a nervous system dynamically explores the action space. The initiation of the escape responses is predictable: the animal moves away from a potential threat, a mechanical or thermal stimulus. But the motor sequence and the timing that follow are variable. We report that a feedforward excitation between neurons encoding distinct motor states underlies robust motor sequence generation, while mutual inhibition between these neurons controls the flexibility of timing in a motor sequence. Electrical synapses contribute to feedforward coupling whereas glutamatergic synapses contribute to inhibition. We conclude that C. elegans generates robust and flexible motor sequences by combining an excitatory coupling and a winner-take-all operation via mutual inhibition between motor modules.

Data availability

All data generated or analysed during this study are included in the manuscript .

Article and author information

Author details

  1. Yuan Wang

    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaoqian Zhang

    School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qi Xin

    School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wesley Hung

    Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeremy Florman

    Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7578-3511
  6. Jing Huo

    School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Tianqi Xu

    Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yu Xie

    School of Physical Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3624-0252
  9. Mark J Alkema

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-5179
  10. Mei Zhen

    Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0086-9622
  11. Quan Wen

    Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
    For correspondence
    qwen@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0268-8403

Funding

National Science Foundation of China (NSFC-31471051 and NSFC-91632102)

  • Yuan Wang
  • Xiaoqian Zhang
  • Qi Xin
  • Jing Huo
  • Tianqi Xu
  • Yu Xie
  • Quan Wen

Strategic Priority Research Program of Chinese Academy of Sciences (XDPB10)

  • Yuan Wang
  • Xiaoqian Zhang
  • Qi Xin
  • Jing Huo
  • Tianqi Xu
  • Yu Xie
  • Quan Wen

CIHR (Foundation Scheme 154274)

  • Wesley Hung
  • Mei Zhen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Manuel Zimmer, Research Institute of Molecular Pathology, Vienna Biocenter and University of Vienna, Austria

Version history

  1. Received: March 15, 2020
  2. Accepted: June 5, 2020
  3. Accepted Manuscript published: June 5, 2020 (version 1)
  4. Version of Record published: July 6, 2020 (version 2)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,870
    views
  • 556
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuan Wang
  2. Xiaoqian Zhang
  3. Qi Xin
  4. Wesley Hung
  5. Jeremy Florman
  6. Jing Huo
  7. Tianqi Xu
  8. Yu Xie
  9. Mark J Alkema
  10. Mei Zhen
  11. Quan Wen
(2020)
Flexible motor sequence generation during stereotyped escape responses
eLife 9:e56942.
https://doi.org/10.7554/eLife.56942

Share this article

https://doi.org/10.7554/eLife.56942

Further reading

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.