Flexible motor sequence generation during stereotyped escape responses

  1. Yuan Wang
  2. Xiaoqian Zhang
  3. Qi Xin
  4. Wesley Hung
  5. Jeremy Florman
  6. Jing Huo
  7. Tianqi Xu
  8. Yu Xie
  9. Mark J Alkema
  10. Mei Zhen
  11. Quan Wen  Is a corresponding author
  1. University of Science and Technology of China, China
  2. Mount Sinai Hospital, Canada
  3. University of Massachusetts Medical School, United States
  4. University of Toronto, Canada

Abstract

Complex animal behaviors arise from a flexible combination of stereotyped motor primitives. Here we use the escape responses of the nematode Caenorhabditis elegans to study how a nervous system dynamically explores the action space. The initiation of the escape responses is predictable: the animal moves away from a potential threat, a mechanical or thermal stimulus. But the motor sequence and the timing that follow are variable. We report that a feedforward excitation between neurons encoding distinct motor states underlies robust motor sequence generation, while mutual inhibition between these neurons controls the flexibility of timing in a motor sequence. Electrical synapses contribute to feedforward coupling whereas glutamatergic synapses contribute to inhibition. We conclude that C. elegans generates robust and flexible motor sequences by combining an excitatory coupling and a winner-take-all operation via mutual inhibition between motor modules.

Data availability

All data generated or analysed during this study are included in the manuscript .

Article and author information

Author details

  1. Yuan Wang

    Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaoqian Zhang

    School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qi Xin

    School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wesley Hung

    Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeremy Florman

    Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7578-3511
  6. Jing Huo

    School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Tianqi Xu

    Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yu Xie

    School of Physical Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3624-0252
  9. Mark J Alkema

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-5179
  10. Mei Zhen

    Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0086-9622
  11. Quan Wen

    Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
    For correspondence
    qwen@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0268-8403

Funding

National Science Foundation of China (NSFC-31471051 and NSFC-91632102)

  • Yuan Wang
  • Xiaoqian Zhang
  • Qi Xin
  • Jing Huo
  • Tianqi Xu
  • Yu Xie
  • Quan Wen

Strategic Priority Research Program of Chinese Academy of Sciences (XDPB10)

  • Yuan Wang
  • Xiaoqian Zhang
  • Qi Xin
  • Jing Huo
  • Tianqi Xu
  • Yu Xie
  • Quan Wen

CIHR (Foundation Scheme 154274)

  • Wesley Hung
  • Mei Zhen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuan Wang
  2. Xiaoqian Zhang
  3. Qi Xin
  4. Wesley Hung
  5. Jeremy Florman
  6. Jing Huo
  7. Tianqi Xu
  8. Yu Xie
  9. Mark J Alkema
  10. Mei Zhen
  11. Quan Wen
(2020)
Flexible motor sequence generation during stereotyped escape responses
eLife 9:e56942.
https://doi.org/10.7554/eLife.56942

Share this article

https://doi.org/10.7554/eLife.56942

Further reading

    1. Neuroscience
    Simon Avrillon, François Hug ... Dario Farina
    Research Article

    Movements are performed by motoneurons transforming synaptic inputs into an activation signal that controls muscle force. The control signal emerges from interactions between ionotropic and neuromodulatory inputs to motoneurons. Critically, these interactions vary across motoneuron pools and differ between muscles. To provide the most comprehensive framework to date of motor unit activity during isometric contractions, we identified the firing activity of extensive samples of motor units in the tibialis anterior (129 ± 44 per participant; n=8) and the vastus lateralis (130 ± 63 per participant; n=8) muscles during isometric contractions of up to 80% of maximal force. From this unique dataset, the rate coding of each motor unit was characterised as the relation between its instantaneous firing rate and the applied force, with the assumption that the linear increase in isometric force reflects a proportional increase in the net synaptic excitatory inputs received by the motoneuron. This relation was characterised with a natural logarithm function that comprised two stages. The initial stage was marked by a steep acceleration of firing rate, which was greater for low- than medium- and high-threshold motor units. The second stage comprised a linear increase in firing rate, which was greater for high- than medium- and low-threshold motor units. Changes in firing rate were largely non-linear during the ramp-up and ramp-down phases of the task, but with significant prolonged firing activity only evident for medium-threshold motor units. Contrary to what is usually assumed, our results demonstrate that the firing rate of each motor unit can follow a large variety of trends with force across the pool. From a neural control perspective, these findings indicate how motor unit pools use gain control to transform inputs with limited bandwidths into an intended muscle force.

    1. Neuroscience
    Yue Li, Qinyao Sun ... Jiaojian Wang
    Research Article

    Disentangling the evolution mysteries of the human brain has always been an imperative endeavor in neuroscience. Although many previous comparative studies revealed genetic, brain structural and connectivity distinctness between human and other nonhuman primates, the brain evolutional mechanism is still largely unclear. Here, we proposed to embed the brain anatomy of human and macaque in the developmental chronological axis to construct cross-species predictive model to quantitatively characterize brain evolution using two large public human and macaque datasets. We observed that applying the trained models within-species could well predict the chronological age. Interestingly, we found the model trained in macaque showed a higher accuracy in predicting the chronological age of human than the model trained in human in predicting the chronological age of macaque. The cross-application of the trained model introduced an individual brain cross-species age gap index to quantify the cross-species discrepancy along the temporal axis of brain development and was found to be associated with the behavioral performance in visual acuity test and picture vocabulary test in human. Taken together, our study situated the cross-species brain development along the chronological axis, which highlighted the disproportionately anatomical development in human brain to extend our understanding of the potential evolutionary effects.