Spatio-temporal associations between deforestation and malaria incidence in Lao PDR

  1. Francois Rerolle  Is a corresponding author
  2. Emily Dantzer
  3. Andrew A Lover
  4. John M Marshall
  5. Bouasy Hongvanthong
  6. Hugh JW Sturrock
  7. Adam Bennett
  1. University of California, San Francisco, United States
  2. University of Massachusetts-Amherst, United States
  3. University of California, Berkeley, United States
  4. Ministry of Health, Lao PDR, Lao People's Democratic Republic

Abstract

As countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria control and elimination efforts on reducing forest-related transmission, greater understanding of the relationship between deforestation and malaria incidence will be essential for programs to assess and meet their 2030 elimination goals. Leveraging village-level health facility surveillance data and forest cover data in a spatio-temporal modeling framework, we found evidence that deforestation is associated with short-term increases, but long-term decreases in confirmed malaria case incidence in Lao People's Democratic Republic (Lao PDR). We identified strong associations with deforestation measured within 30 km of villages but not with deforestation in the near (10 km) and immediate (1 km) vicinity. Results appear driven by deforestation in densely forested areas and were more pronounced for infections with Plasmodium falciparum (P. falciparum) than for Plasmodium vivax (P. vivax). These findings highlight the influence of forest activities on malaria transmission in the GMS.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4 and 5 and for Tables 1, 2 and 3.

The following previously published data sets were used

Article and author information

Author details

  1. Francois Rerolle

    Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, United States
    For correspondence
    francois.rerolle@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3837-5700
  2. Emily Dantzer

    Institute of Global Health Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew A Lover

    Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2181-3559
  4. John M Marshall

    Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0603-7341
  5. Bouasy Hongvanthong

    Center for Malariology, Parasitology and Entomology, Ministry of Health, Lao PDR, Vientiane, Lao People's Democratic Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Hugh JW Sturrock

    Institute of Global Health Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Adam Bennett

    Institute of Global Health Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Bill and Melinda Gates Foundation (OPP1116450)

  • Francois Rerolle
  • Emily Dantzer
  • Andrew A Lover
  • Bouasy Hongvanthong
  • Hugh JW Sturrock
  • Adam Bennett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben S Cooper, Mahidol University, Thailand

Ethics

Human subjects: This study was approved by the National Ethics Committee for Health Research at the Lao Ministry of Health (Approval #2016-014; 8/22/2016) and by the UCSF ethical review board (Approvals #16-19649 and #17-22577). The informed consent process was consistent with local norms, and all study areas had a consultation meeting with, and approvals from, village elders. All participants provided informed written consent; caregivers provided consent for all children under 18, and all children aged 10 and above also provided consent directly. The study was conducted according to the ethical principles of the Declaration of Helsinki of October 2002.

Version history

  1. Received: March 16, 2020
  2. Accepted: February 19, 2021
  3. Accepted Manuscript published: March 9, 2021 (version 1)
  4. Version of Record published: April 6, 2021 (version 2)

Copyright

© 2021, Rerolle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,473
    views
  • 181
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francois Rerolle
  2. Emily Dantzer
  3. Andrew A Lover
  4. John M Marshall
  5. Bouasy Hongvanthong
  6. Hugh JW Sturrock
  7. Adam Bennett
(2021)
Spatio-temporal associations between deforestation and malaria incidence in Lao PDR
eLife 10:e56974.
https://doi.org/10.7554/eLife.56974

Share this article

https://doi.org/10.7554/eLife.56974

Further reading

  1. How does cutting down forests influence the spread of malaria?

    1. Epidemiology and Global Health
    Xiaoxin Yu, Roger S Zoh ... David B Allison
    Review Article

    We discuss 12 misperceptions, misstatements, or mistakes concerning the use of covariates in observational or nonrandomized research. Additionally, we offer advice to help investigators, editors, reviewers, and readers make more informed decisions about conducting and interpreting research where the influence of covariates may be at issue. We primarily address misperceptions in the context of statistical management of the covariates through various forms of modeling, although we also emphasize design and model or variable selection. Other approaches to addressing the effects of covariates, including matching, have logical extensions from what we discuss here but are not dwelled upon heavily. The misperceptions, misstatements, or mistakes we discuss include accurate representation of covariates, effects of measurement error, overreliance on covariate categorization, underestimation of power loss when controlling for covariates, misinterpretation of significance in statistical models, and misconceptions about confounding variables, selecting on a collider, and p value interpretations in covariate-inclusive analyses. This condensed overview serves to correct common errors and improve research quality in general and in nutrition research specifically.