High-fidelity musculoskeletal modeling reveals a motor planning contribution to the speed-accuracy tradeoff

  1. Mazen Al Borno  Is a corresponding author
  2. Saurabh Vyas
  3. Krishna V Shenoy
  4. Scott L Delp
  1. Stanford University, United States

Abstract

A long-standing challenge in motor neuroscience is to understand the relationship between movement speed and accuracy, known as the speed-accuracy tradeoff. Here, we introduce a biomechanically realistic computational model of three-dimensional upper extremity movements that reproduces well-known features of reaching movements. This model revealed that the speed-accuracy tradeoff, as described by Fitts' law, emerges even without the presence of motor noise, which is commonly believed to underlie the speed-accuracy tradeoff. Next, we analyzed motor cortical neural activity from monkeys reaching to targets of different sizes. We found that the contribution of preparatory neural activity to movement duration variability is greater for smaller targets than larger targets, and that movements to smaller targets exhibit less variability in population-level preparatory activity, but greater movement duration variability. These results propose a new theory underlying the speed-accuracy tradeoff: Fitts' law emerges from greater task demands constraining the optimization landscape in a fashion that reduces the number of 'good' control solutions (i.e., faster reaches). Thus, contrary to current beliefs, the speed-accuracy tradeoff could be a consequence of motor planning variability and not exclusively signal-dependent noise.

Data availability

The source code for the computer simulations and our data are available at https://simtk.org/projects/ue-reaching. Users must first create a free account (https://simtk.org/account/register.php) before they can download the datasets from the site.

Article and author information

Author details

  1. Mazen Al Borno

    Bioengineering, Stanford University, Palo Alto, United States
    For correspondence
    malborno@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2208-9934
  2. Saurabh Vyas

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Krishna V Shenoy

    Department of Electrical Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Scott L Delp

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (U54EB020405)

  • Scott L Delp

National Institute of Neurological Disorders and Stroke (R01NS076460)

  • Krishna V Shenoy

National Institute of Mental Health (R01MH09964703)

  • Krishna V Shenoy

Defense Advanced Research Projects Agency (N66001-10-C-2010)

  • Krishna V Shenoy

National Institutes of Health (8DP1HD075623)

  • Krishna V Shenoy

Simons Foundation (325380 and 543045)

  • Krishna V Shenoy

National Institutes of Health (5F31NS103409-02)

  • Saurabh Vyas

National Science Foundation (Graduate Fellowship)

  • Saurabh Vyas

Stanford University (Ric Weiland Stanford Graduate Fellowship)

  • Saurabh Vyas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical and animal care procedures were performed in accordance with NationalInstitutes of Health guidelines and were approved by the Stanford University InstitutionalAnimal Care and Use Committee (8856).

Human subjects: Subjects gave written informed consent, and consent to publish, approved by the Stanford University Institutional Review Board (42787). The guidelines followed are specified in the Human Research Protection Program (HRPP Stanford University).

Copyright

© 2020, Al Borno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,987
    views
  • 254
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mazen Al Borno
  2. Saurabh Vyas
  3. Krishna V Shenoy
  4. Scott L Delp
(2020)
High-fidelity musculoskeletal modeling reveals a motor planning contribution to the speed-accuracy tradeoff
eLife 9:e57021.
https://doi.org/10.7554/eLife.57021

Share this article

https://doi.org/10.7554/eLife.57021

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.