1. Neuroscience
Download icon

High-fidelity musculoskeletal modeling reveals a motor planning contribution to the speed-accuracy tradeoff

  1. Mazen Al Borno  Is a corresponding author
  2. Saurabh Vyas
  3. Krishna V Shenoy
  4. Scott L Delp
  1. Stanford University, United States
Research Article
  • Cited 2
  • Views 993
  • Annotations
Cite this article as: eLife 2020;9:e57021 doi: 10.7554/eLife.57021

Abstract

A long-standing challenge in motor neuroscience is to understand the relationship between movement speed and accuracy, known as the speed-accuracy tradeoff. Here, we introduce a biomechanically realistic computational model of three-dimensional upper extremity movements that reproduces well-known features of reaching movements. This model revealed that the speed-accuracy tradeoff, as described by Fitts' law, emerges even without the presence of motor noise, which is commonly believed to underlie the speed-accuracy tradeoff. Next, we analyzed motor cortical neural activity from monkeys reaching to targets of different sizes. We found that the contribution of preparatory neural activity to movement duration variability is greater for smaller targets than larger targets, and that movements to smaller targets exhibit less variability in population-level preparatory activity, but greater movement duration variability. These results propose a new theory underlying the speed-accuracy tradeoff: Fitts' law emerges from greater task demands constraining the optimization landscape in a fashion that reduces the number of 'good' control solutions (i.e., faster reaches). Thus, contrary to current beliefs, the speed-accuracy tradeoff could be a consequence of motor planning variability and not exclusively signal-dependent noise.

Data availability

The source code for the computer simulations and our data are available at https://simtk.org/projects/ue-reaching. Users must first create a free account (https://simtk.org/account/register.php) before they can download the datasets from the site.

Article and author information

Author details

  1. Mazen Al Borno

    Bioengineering, Stanford University, Palo Alto, United States
    For correspondence
    malborno@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2208-9934
  2. Saurabh Vyas

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Krishna V Shenoy

    Department of Electrical Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Scott L Delp

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (U54EB020405)

  • Scott L Delp

National Institute of Neurological Disorders and Stroke (R01NS076460)

  • Krishna V Shenoy

National Institute of Mental Health (R01MH09964703)

  • Krishna V Shenoy

Defense Advanced Research Projects Agency (N66001-10-C-2010)

  • Krishna V Shenoy

National Institutes of Health (8DP1HD075623)

  • Krishna V Shenoy

Simons Foundation (325380 and 543045)

  • Krishna V Shenoy

National Institutes of Health (5F31NS103409-02)

  • Saurabh Vyas

National Science Foundation (Graduate Fellowship)

  • Saurabh Vyas

Stanford University (Ric Weiland Stanford Graduate Fellowship)

  • Saurabh Vyas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical and animal care procedures were performed in accordance with NationalInstitutes of Health guidelines and were approved by the Stanford University InstitutionalAnimal Care and Use Committee (8856).

Human subjects: Subjects gave written informed consent, and consent to publish, approved by the Stanford University Institutional Review Board (42787). The guidelines followed are specified in the Human Research Protection Program (HRPP Stanford University).

Reviewing Editor

  1. J Andrew Pruszynski, Western University, Canada

Publication history

  1. Received: March 18, 2020
  2. Accepted: December 15, 2020
  3. Accepted Manuscript published: December 16, 2020 (version 1)
  4. Version of Record published: January 6, 2021 (version 2)

Copyright

© 2020, Al Borno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 993
    Page views
  • 123
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Maude Bouchard et al.
    Research Article Updated

    Sleep slow waves are studied for their role in brain plasticity, homeostatic regulation, and their changes during aging. Here, we address the possibility that two types of slow waves co-exist in humans. Thirty young and 29 older adults underwent a night of polysomnographic recordings. Using the transition frequency, slow waves with a slow transition (slow switchers) and those with a fast transition (fast switchers) were discovered. Slow switchers had a high electroencephalography (EEG) connectivity along their depolarization transition while fast switchers had a lower connectivity dynamics and dissipated faster during the night. Aging was associated with lower temporal dissipation of sleep pressure in slow and fast switchers and lower EEG connectivity at the microscale of the oscillations, suggesting a decreased flexibility in the connectivity network of older individuals. Our findings show that two different types of slow waves with possible distinct underlying functions coexist in the slow wave spectrum.

    1. Neuroscience
    Michael A Barnett et al.
    Research Article Updated

    An important goal for vision science is to develop quantitative models of the representation of visual signals at post-receptoral sites. To this end, we develop the quadratic color model (QCM) and examine its ability to account for the BOLD fMRI response in human V1 to spatially uniform, temporal chromatic modulations that systematically vary in chromatic direction and contrast. We find that the QCM explains the same, cross-validated variance as a conventional general linear model, with far fewer free parameters. The QCM generalizes to allow prediction of V1 responses to a large range of modulations. We replicate the results for each subject and find good agreement across both replications and subjects. We find that within the LM cone contrast plane, V1 is most sensitive to L-M contrast modulations and least sensitive to L+M contrast modulations. Within V1, we observe little to no change in chromatic sensitivity as a function of eccentricity.