Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha

  1. Tom Dierschke
  2. Eduardo Flores-Sandoval
  3. Madlen I Rast-Somssich
  4. Felix Althoff
  5. Sabine Zachgo
  6. John L Bowman  Is a corresponding author
  1. Monash University, Australia
  2. University of Osnabrück, Germany

Abstract

Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular Chlorophyte alga Chlamydomonas KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Tom Dierschke

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Eduardo Flores-Sandoval

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Madlen I Rast-Somssich

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Felix Althoff

    Botany Department, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sabine Zachgo

    Botany Department, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. John L Bowman

    School of Biological Sciences, Monash University, Melbourne, Australia
    For correspondence
    John.Bowman@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7347-3691

Funding

Australian Research Council (FF0551326)

  • Tom Dierschke
  • Eduardo Flores-Sandoval
  • John L Bowman

Australian Research Council (DP130100177)

  • Tom Dierschke
  • Eduardo Flores-Sandoval
  • John L Bowman

Australian Research Council (DP170100049)

  • Tom Dierschke
  • Eduardo Flores-Sandoval
  • Madlen I Rast-Somssich
  • John L Bowman

Deutsche Forschungsgemeinschaft (SFB944,P13)

  • Tom Dierschke
  • Felix Althoff
  • Sabine Zachgo

Australian Research Council (DP210101423)

  • Tom Dierschke
  • John L Bowman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sheila McCormick, University of California, Berkeley, United States

Version history

  1. Received: March 20, 2020
  2. Preprint posted: April 7, 2020 (view preprint)
  3. Accepted: September 15, 2021
  4. Accepted Manuscript published: September 17, 2021 (version 1)
  5. Accepted Manuscript updated: September 20, 2021 (version 2)
  6. Version of Record published: September 27, 2021 (version 3)

Copyright

© 2021, Dierschke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,085
    views
  • 310
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tom Dierschke
  2. Eduardo Flores-Sandoval
  3. Madlen I Rast-Somssich
  4. Felix Althoff
  5. Sabine Zachgo
  6. John L Bowman
(2021)
Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha
eLife 10:e57088.
https://doi.org/10.7554/eLife.57088

Share this article

https://doi.org/10.7554/eLife.57088

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.