1. Structural Biology and Molecular Biophysics
Download icon

Structural Insights into Human Acid-sensing Ion Channel 1a Inhibition by Snake Toxin Mambalgin1

  1. Changlin Tian  Is a corresponding author
  2. Demeng Sun
  3. Sanling Liu
  4. Siyu Li
  5. Mengge Zhang
  6. Fan Yang
  7. Ming Wen
  8. Pan Shi
  9. Tao Wang
  10. Man Pan
  11. Shenghai Chang
  12. Xing Zhang
  13. Longhua Zhang
  14. Lei Liu
  1. University of Science and Tehnology of China, China
  2. University of Science and Technology of China, China
  3. Chinese Academy of Sciences, China
  4. Tsinghua University, China
  5. Zhejiang University, China
Research Article
  • Cited 7
  • Views 2,240
  • Annotations
Cite this article as: eLife 2020;9:e57096 doi: 10.7554/eLife.57096

Abstract

Acid-sensing ion channels (ASICs) are proton-gated cation channels that are involved in diverse neuronal processes including pain sensing. Peptide toxin Mambalgin1 (Mamba1) from black mamba snake venom can reversibly inhibit the conductance of ASICs, showing an analgesic effect. However, the detailed inhibitory mechanism of Mamba1 on ASIC1s, especially how Mamba1 binding to extracellular domain affects the conformational changes of the transmembrane domain of ASICs remains elusive. Here, we present single-particle cryo-EM structures of human ASIC1a (hASIC1a) and hASIC1a-Mamba1 complex at resolutions of 3.56 and 3.90 Å, respectively. The structures revealed the inhibited conformation of hASIC1a upon Mamba1 binding. The combination of the structural and physiological data indicates that Mamba1 prefers to bind hASIC1a in a closed state and reduces the proton sensitivity of the channel, representing a closed-state trapping mechanism.

Data availability

The EM maps for hASIC1a and hASIC1a-Mamba1 complex have been deposited in EMDB (www.ebi.ac.uk/pdbe/emdb/) with accession codes EMD-30346 and EMD-30347. The atomic coordinates for hASIC1a and hASIC1a-Mamba1 complex have been deposited in the Protein Data Bank (www.rcsb.org) with accession codes 7CFS and 7CFT respectively

The following previously published data sets were used

Article and author information

Author details

  1. Changlin Tian

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    For correspondence
    cltian@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9315-900X
  2. Demeng Sun

    School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Sanling Liu

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Siyu Li

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mengge Zhang

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Yang

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ming Wen

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Pan Shi

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Tao Wang

    High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Man Pan

    Department of Chemistry, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Shenghai Chang

    School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Xing Zhang

    School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Longhua Zhang

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Lei Liu

    Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministry of Science and Technology of the People's Republic of China (National Key Research and Development Project,2017YFA0505201,2017YFA0505403 and 2016YFA0400903)

  • Changlin Tian

Chinese Academy of Sciences (Queensland-Chinese Academy of Sciences (Q-CAS) Collaborative Science Fund,GJHZ201946)

  • Changlin Tian

Ministry of Science and Technology of the People's Republic of China (National Key Research and Development Project,2017YFA0505200)

  • Lei Liu

National Natural Science Foundation of China (31600601,21778051)

  • Demeng Sun

National Natural Science Foundation of China (91753205,21532004)

  • Lei Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D Islas, Universidad Nacional Autónoma de México, Mexico

Publication history

  1. Received: March 20, 2020
  2. Accepted: September 10, 2020
  3. Accepted Manuscript published: September 11, 2020 (version 1)
  4. Version of Record published: October 13, 2020 (version 2)

Copyright

© 2020, Tian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,240
    Page views
  • 429
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Justin D Lormand et al.
    Research Advance

    RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonucleotidase, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC employs similar structural features that distinguish these two classes as dinucleotidases from other exonucleases, the key determinants for dinucleotidase activity are realized through distinct structural scaffolds. The structures together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases indicates convergent evolution as the mechanism of how dinucleotidase activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinucleotidase activity further underlines the important role these analogous proteins play for cell growth.

    1. Structural Biology and Molecular Biophysics
    Matthias Wälchli et al.
    Research Article

    The vertebrate-specific DEP domain-containing mTOR interacting protein (DEPTOR), an oncoprotein or tumor suppressor, has important roles in metabolism, immunity, and cancer. It is the only protein that binds and regulates both complexes of mammalian target of rapamycin (mTOR), a central regulator of cell growth. Biochemical analysis and cryo-EM reconstructions of DEPTOR bound to human mTOR complex 1 (mTORC1) and mTORC2 reveal that both structured regions of DEPTOR, the PDZ domain and the DEP domain tandem (DEPt), are involved in mTOR interaction. The PDZ domain binds tightly with mildly activating effect, but then acts as an anchor for DEPt association that allosterically suppresses mTOR activation. The binding interfaces of the PDZ domain and DEPt also support further regulation by other signaling pathways. A separate, substrate-like mode of interaction for DEPTOR phosphorylation by mTOR complexes rationalizes inhibition of non-stimulated mTOR activity at higher DEPTOR concentrations. The multifaceted interplay between DEPTOR and mTOR provides a basis for understanding the divergent roles of DEPTOR in physiology and opens new routes for targeting the mTOR-DEPTOR interaction in disease.