Structural Insights into Human Acid-sensing Ion Channel 1a Inhibition by Snake Toxin Mambalgin1

  1. Changlin Tian  Is a corresponding author
  2. Demeng Sun
  3. Sanling Liu
  4. Siyu Li
  5. Mengge Zhang
  6. Fan Yang
  7. Ming Wen
  8. Pan Shi
  9. Tao Wang
  10. Man Pan
  11. Shenghai Chang
  12. Xing Zhang
  13. Longhua Zhang
  14. Lei Liu
  1. University of Science and Tehnology of China, China
  2. University of Science and Technology of China, China
  3. Chinese Academy of Sciences, China
  4. Tsinghua University, China
  5. Zhejiang University, China

Abstract

Acid-sensing ion channels (ASICs) are proton-gated cation channels that are involved in diverse neuronal processes including pain sensing. Peptide toxin Mambalgin1 (Mamba1) from black mamba snake venom can reversibly inhibit the conductance of ASICs, showing an analgesic effect. However, the detailed inhibitory mechanism of Mamba1 on ASIC1s, especially how Mamba1 binding to extracellular domain affects the conformational changes of the transmembrane domain of ASICs remains elusive. Here, we present single-particle cryo-EM structures of human ASIC1a (hASIC1a) and hASIC1a-Mamba1 complex at resolutions of 3.56 and 3.90 Å, respectively. The structures revealed the inhibited conformation of hASIC1a upon Mamba1 binding. The combination of the structural and physiological data indicates that Mamba1 prefers to bind hASIC1a in a closed state and reduces the proton sensitivity of the channel, representing a closed-state trapping mechanism.

Data availability

The EM maps for hASIC1a and hASIC1a-Mamba1 complex have been deposited in EMDB (www.ebi.ac.uk/pdbe/emdb/) with accession codes EMD-30346 and EMD-30347. The atomic coordinates for hASIC1a and hASIC1a-Mamba1 complex have been deposited in the Protein Data Bank (www.rcsb.org) with accession codes 7CFS and 7CFT respectively

The following previously published data sets were used

Article and author information

Author details

  1. Changlin Tian

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    For correspondence
    cltian@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9315-900X
  2. Demeng Sun

    School of Life Sciences, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Sanling Liu

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Siyu Li

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mengge Zhang

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Yang

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Ming Wen

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Pan Shi

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Tao Wang

    High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Man Pan

    Department of Chemistry, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Shenghai Chang

    School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Xing Zhang

    School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Longhua Zhang

    School of Life Science, University of Science and Tehnology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Lei Liu

    Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.

Funding

Ministry of Science and Technology of the People's Republic of China (National Key Research and Development Project,2017YFA0505201,2017YFA0505403 and 2016YFA0400903)

  • Changlin Tian

Chinese Academy of Sciences (Queensland-Chinese Academy of Sciences (Q-CAS) Collaborative Science Fund,GJHZ201946)

  • Changlin Tian

Ministry of Science and Technology of the People's Republic of China (National Key Research and Development Project,2017YFA0505200)

  • Lei Liu

National Natural Science Foundation of China (31600601,21778051)

  • Demeng Sun

National Natural Science Foundation of China (91753205,21532004)

  • Lei Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Tian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,824
    views
  • 690
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Changlin Tian
  2. Demeng Sun
  3. Sanling Liu
  4. Siyu Li
  5. Mengge Zhang
  6. Fan Yang
  7. Ming Wen
  8. Pan Shi
  9. Tao Wang
  10. Man Pan
  11. Shenghai Chang
  12. Xing Zhang
  13. Longhua Zhang
  14. Lei Liu
(2020)
Structural Insights into Human Acid-sensing Ion Channel 1a Inhibition by Snake Toxin Mambalgin1
eLife 9:e57096.
https://doi.org/10.7554/eLife.57096

Share this article

https://doi.org/10.7554/eLife.57096

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Structural Biology and Molecular Biophysics
    Kingsley Y Wu, Ta I Hung, Chia-en A Chang
    Research Article

    PROteolysis TArgeting Chimeras (PROTACs) are small molecules that induce target protein degradation via the ubiquitin-proteasome system. PROTACs recruit the target protein and E3 ligase; a critical first step is forming a ternary complex. However, while the formation of a ternary complex is crucial, it may not always guarantee successful protein degradation. The dynamics of the PROTAC-induced degradation complex play a key role in ubiquitination and subsequent degradation. In this study, we computationally modelled protein complex structures and dynamics associated with a series of PROTACs featuring different linkers to investigate why these PROTACs, all of which formed ternary complexes with Cereblon (CRBN) E3 ligase and the target protein bromodomain-containing protein 4 (BRD4BD1), exhibited varying degrees of degradation potency. We constructed the degradation machinery complexes with Culling-Ring Ligase 4A (CRL4A) E3 ligase scaffolds. Through atomistic molecular dynamics simulations, we illustrated how PROTAC-dependent protein dynamics facilitating the arrangement of surface lysine residues of BRD4BD1 into the catalytic pocket of E2/ubiquitin cascade for ubiquitination. Despite featuring identical warheads in this PROTAC series, the linkers were found to affect the residue-interaction networks, and thus governing the essential motions of the entire degradation machine for ubiquitination. These findings offer a structural dynamic perspective on ligand-induced protein degradation, providing insights to guide future PROTAC design endeavors.