The dimeric Golgi protein Gorab binds to Sas6 as a monomer to mediate centriole duplication

  1. Agnieszka Fatalska  Is a corresponding author
  2. Emma Stepinac
  3. Magdalena Richter
  4. Levente Kovacs
  5. Zbigniew Pietras
  6. Martin Puchinger
  7. Gang Dong
  8. Michal Dadlez
  9. David M Glover  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Medical University of Vienna, Austria
  3. Institute of Biochemistry and Biophysics PAS, Poland
  4. University of Vienna, Austria

Abstract

The duplication and 9-fold symmetry of the Drosophila centriole requires that the cartwheel molecule, Sas6, physically associates with Gorab, a trans-Golgi component. How Gorab achieves these disparate associations is unclear. Here we use hydrogen-deuterium exchange mass spectrometry to define Gorab's interacting surfaces that mediate its sub-cellular localization. We identify a core stabilization sequence within Gorab's C-terminal coiled-coil domain that enables homodimerization, binding to Rab6, and thereby trans-Golgi localization. By contrast, part of the Gorab monomer's coiled-coil domain undergoes an anti-parallel interaction with a segment of the parallel coiled-coil dimer of Sas6. This stable hetero-trimeric complex can be visualized by electron microscopy. Mutation of a single leucine residue in Sas6's Gorab-binding domain generates a Sas6 variant with a 16-fold reduced binding affinity for Gorab that can not support centriole duplication. Thus Gorab dimers at the Golgi exist in equilibrium with Sas-6 associated monomers at the centriole to balance Gorab's dual role.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Agnieszka Fatalska

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    af589@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1720-4742
  2. Emma Stepinac

    Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Magdalena Richter

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Levente Kovacs

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Zbigniew Pietras

    Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Puchinger

    Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Gang Dong

    Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Michal Dadlez

    Biophysics, Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  9. David M Glover

    Genetics, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    dmg25@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome Trust (Investigator Award)

  • David M Glover

National Institute of Neurological Disorders and Stroke (R01NS113930)

  • David M Glover

National Science Centre (MAESTRO project UMO-2014/14/A/NZ1/00306)

  • Agnieszka Fatalska
  • Michal Dadlez

Austrian Science Fund (P28231-B28)

  • Gang Dong

Austrian Science Fund (W-1258 Doktoratskollegs)

  • Emma Stepinac

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Fatalska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,677
    views
  • 275
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agnieszka Fatalska
  2. Emma Stepinac
  3. Magdalena Richter
  4. Levente Kovacs
  5. Zbigniew Pietras
  6. Martin Puchinger
  7. Gang Dong
  8. Michal Dadlez
  9. David M Glover
(2021)
The dimeric Golgi protein Gorab binds to Sas6 as a monomer to mediate centriole duplication
eLife 10:e57241.
https://doi.org/10.7554/eLife.57241

Share this article

https://doi.org/10.7554/eLife.57241

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.