The dimeric Golgi protein Gorab binds to Sas6 as a monomer to mediate centriole duplication

  1. Agnieszka Fatalska  Is a corresponding author
  2. Emma Stepinac
  3. Magdalena Richter
  4. Levente Kovacs
  5. Zbigniew Pietras
  6. Martin Puchinger
  7. Gang Dong
  8. Michal Dadlez
  9. David M Glover  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Medical University of Vienna, Austria
  3. Institute of Biochemistry and Biophysics PAS, Poland
  4. University of Vienna, Austria

Abstract

The duplication and 9-fold symmetry of the Drosophila centriole requires that the cartwheel molecule, Sas6, physically associates with Gorab, a trans-Golgi component. How Gorab achieves these disparate associations is unclear. Here we use hydrogen-deuterium exchange mass spectrometry to define Gorab's interacting surfaces that mediate its sub-cellular localization. We identify a core stabilization sequence within Gorab's C-terminal coiled-coil domain that enables homodimerization, binding to Rab6, and thereby trans-Golgi localization. By contrast, part of the Gorab monomer's coiled-coil domain undergoes an anti-parallel interaction with a segment of the parallel coiled-coil dimer of Sas6. This stable hetero-trimeric complex can be visualized by electron microscopy. Mutation of a single leucine residue in Sas6's Gorab-binding domain generates a Sas6 variant with a 16-fold reduced binding affinity for Gorab that can not support centriole duplication. Thus Gorab dimers at the Golgi exist in equilibrium with Sas-6 associated monomers at the centriole to balance Gorab's dual role.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Agnieszka Fatalska

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    af589@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1720-4742
  2. Emma Stepinac

    Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Magdalena Richter

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Levente Kovacs

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Zbigniew Pietras

    Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Puchinger

    Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Gang Dong

    Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Michal Dadlez

    Biophysics, Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  9. David M Glover

    Genetics, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    dmg25@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome Trust (Investigator Award)

  • David M Glover

National Institute of Neurological Disorders and Stroke (R01NS113930)

  • David M Glover

National Science Centre (MAESTRO project UMO-2014/14/A/NZ1/00306)

  • Agnieszka Fatalska
  • Michal Dadlez

Austrian Science Fund (P28231-B28)

  • Gang Dong

Austrian Science Fund (W-1258 Doktoratskollegs)

  • Emma Stepinac

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Fatalska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,662
    views
  • 274
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agnieszka Fatalska
  2. Emma Stepinac
  3. Magdalena Richter
  4. Levente Kovacs
  5. Zbigniew Pietras
  6. Martin Puchinger
  7. Gang Dong
  8. Michal Dadlez
  9. David M Glover
(2021)
The dimeric Golgi protein Gorab binds to Sas6 as a monomer to mediate centriole duplication
eLife 10:e57241.
https://doi.org/10.7554/eLife.57241

Share this article

https://doi.org/10.7554/eLife.57241

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alexandra Urbancokova, Terezie Hornofova ... Pavla Vasicova
    Research Article

    PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.

    1. Cell Biology
    Surya Bansi Singh, Shatruhan Singh Rajput ... Deepa Subramanyam
    Research Article

    Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.