SARS-CoV-2 (COVID-19) by the numbers

  1. Yinon M Bar-On
  2. Avi Flamholz
  3. Rob Phillips
  4. Ron Milo  Is a corresponding author
  1. The Weizmann Institute for Science, Israel
  2. University of California, Berkeley, United States
  3. California Institute of Technology, United States

Abstract

The current SARS-CoV-2 pandemic is a harsh reminder of the fact that, whether in a single human host or a wave of infection across continents, viral dynamics is often a story about the numbers. In this snapshot, our aim is to provide a one-stop, curated graphical source for the key numbers that help us understand the virus driving our current global crisis. The discussion is framed around two broad themes: 1) the biology of the virus itself and 2) the characteristics of the infection of a single human host. Our one-page summary provides the key numbers pertaining to SARS-CoV-2, based mostly on peer-reviewed literature. The numbers reported in summary format are substantiated by the annotated references below. Readers are urged to remember that much uncertainty remains and knowledge of this pandemic and the virus driving it is rapidly evolving. In the paragraphs below we provide 'back of the envelope' calculations that exemplify the insights that can be gained from knowing some key numbers and using quantitative logic. These calculations serve to improve our intuition through sanity checks, but do not replace detailed epidemiological analysis.

Data availability

This article is a compilation of previously published data; no new data were generated in this study.

Article and author information

Author details

  1. Yinon M Bar-On

    Department of Plant and Environmental Sciences, The Weizmann Institute for Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8477-609X
  2. Avi Flamholz

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9278-5479
  3. Rob Phillips

    Department of Bioengineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3082-2809
  4. Ron Milo

    Department of Plant and Environmental Sciences, The Weizmann Institute for Science, Rehovot, Israel
    For correspondence
    ron.milo@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1641-2299

Funding

National Institutes of Health (1R35 GM118043-01 (Maximizing Investigators Research Award))

  • Rob Phillips

Charles and Louise Gartner professional chair

  • Ron Milo

Azrieli Fellow

  • Yinon M Bar-On

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael B Eisen, HHMI, University of California, Berkeley, United States

Publication history

  1. Received: March 27, 2020
  2. Accepted: March 30, 2020
  3. Accepted Manuscript published: March 31, 2020 (version 1)
  4. Accepted Manuscript updated: April 1, 2020 (version 2)
  5. Accepted Manuscript updated: April 2, 2020 (version 3)
  6. Version of Record published: May 14, 2020 (version 4)

Copyright

© 2020, Bar-On et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 73,770
    Page views
  • 8,806
    Downloads
  • 632
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yinon M Bar-On
  2. Avi Flamholz
  3. Rob Phillips
  4. Ron Milo
(2020)
SARS-CoV-2 (COVID-19) by the numbers
eLife 9:e57309.
https://doi.org/10.7554/eLife.57309

Further reading

    1. Epidemiology and Global Health
    Qixin He, John K Chaillet, Frédéric Labbé
    Research Article

    The establishment and spread of antimalarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.

    1. Epidemiology and Global Health
    Nora Schmit, Hillary M Topazian ... Azra C Ghani
    Research Article

    Large reductions in the global malaria burden have been achieved, but plateauing funding poses a challenge for progressing towards the ultimate goal of malaria eradication. Using previously published mathematical models of Plasmodium falciparum and Plasmodium vivax transmission incorporating insecticide-treated nets (ITNs) as an illustrative intervention, we sought to identify the global funding allocation that maximized impact under defined objectives and across a range of global funding budgets. The optimal strategy for case reduction mirrored an allocation framework that prioritizes funding for high-transmission settings, resulting in total case reductions of 76% and 66% at intermediate budget levels, respectively. Allocation strategies that had the greatest impact on case reductions were associated with lesser near-term impacts on the global population at risk. The optimal funding distribution prioritized high ITN coverage in high-transmission settings endemic for P. falciparum only, while maintaining lower levels in low-transmission settings. However, at high budgets, 62% of funding was targeted to low-transmission settings co-endemic for P. falciparum and P. vivax. These results support current global strategies to prioritize funding to high-burden P. falciparum-endemic settings in sub-Saharan Africa to minimize clinical malaria burden and progress towards elimination, but highlight a trade-off with ‘shrinking the map’ through a focus on near-elimination settings and addressing the burden of P. vivax.