CD56 regulates human NK cell cytotoxicity through Pyk2

  1. Justin T Gunesch
  2. Amera L Dixon
  3. Tasneem AM Ebrahim
  4. Melissa Berrien-Elliott
  5. Swetha Tatineni
  6. Tejas Kumar
  7. Everardo Hegewisch-Solloa
  8. Todd A Fehniger
  9. Emily M Mace  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Columbia University, United States
  3. Barnard College, United States
  4. Washington University, United States
  5. Rice University, United States
  6. Washington University School of Medicine, United States

Abstract

Human natural killer (NK) cells are defined as CD56+CD3−. Despite its ubiquitous expression on human NK cells the role of CD56 (NCAM) in human NK cell cytotoxic function has not been defined. In non-immune cells, NCAM can induce signaling, mediate adhesion, and promote exocytosis through interactions with focal adhesion kinase (FAK). Here we demonstrate that deletion of CD56 on the NK92 cell line leads to impaired cytotoxic function. CD56-knockout (KO) cells fail to polarize during immunological synapse (IS) formation and have severely impaired exocytosis of lytic granules. Phosphorylation of the FAK family member Pyk2 at tyrosine 402 is decreased in NK92 CD56-KO cells, demonstrating a functional link between CD56 and signaling in human NK cells. Cytotoxicity, lytic granule exocytosis, and the phosphorylation of Pyk2 are rescued by the reintroduction of CD56. These data highlight a novel functional role for CD56 in stimulating exocytosis and promoting cytotoxicity in human NK cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Justin T Gunesch

    Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amera L Dixon

    Pediatrics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tasneem AM Ebrahim

    Biology, Barnard College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Melissa Berrien-Elliott

    Medicine, Washington University, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Swetha Tatineni

    Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tejas Kumar

    Pediatrics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Everardo Hegewisch-Solloa

    Pediatrics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Todd A Fehniger

    Dept of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8705-2887
  9. Emily M Mace

    Pediatrics, Columbia University, New York, United States
    For correspondence
    em3375@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0226-7393

Funding

National Institutes of Health (R01AI137073)

  • Emily M Mace

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Peripheral blood NK cells were obtained in accordance with the Declaration of Helsinki with the written and informed consent of all participants under the guidance of the Institutional Review Boards of Baylor College of Medicine (IRB H-30487) and Columbia University (IRB AAAR7377).

Copyright

© 2020, Gunesch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,299
    views
  • 730
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin T Gunesch
  2. Amera L Dixon
  3. Tasneem AM Ebrahim
  4. Melissa Berrien-Elliott
  5. Swetha Tatineni
  6. Tejas Kumar
  7. Everardo Hegewisch-Solloa
  8. Todd A Fehniger
  9. Emily M Mace
(2020)
CD56 regulates human NK cell cytotoxicity through Pyk2
eLife 9:e57346.
https://doi.org/10.7554/eLife.57346

Share this article

https://doi.org/10.7554/eLife.57346

Further reading

    1. Cell Biology
    Kelsey R Baron, Samantha Oviedo ... R Luke Wiseman
    Research Article

    Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.

    1. Cell Biology
    Erli Jin, Jennifer K Briggs ... Matthew J Merrins
    Research Article

    Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled β-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used three-dimensional (3D) light-sheet imaging to analyze the location and Ca2+ activity of single β-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized β-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes ‘hub cells’, is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. β-Cells that initiate the Ca2+ wave (leaders) are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the β-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning ‘leader’ β-cells.