Population-scale proteome variation in human induced pluripotent stem cells

  1. Bogdan Andrei Mirauta
  2. Daniel D Seaton
  3. Dalila Bensaddek
  4. Alejandro Brenes Murillo
  5. Marc Jan Bonder
  6. Helena Kilpinen
  7. HipSci Consortium
  8. Oliver Stegle  Is a corresponding author
  9. Angus I Lamond  Is a corresponding author
  1. European Bioinformatics Institute, United Kingdom
  2. University of Dundee, United Kingdom
  3. University College London, United Kingdom
  4. European Molecular Biology Laboratory, European Bioinformatics Institute, United Kingdom

Abstract

Human disease phenotypes are ultimately driven primarily by alterations in protein expression and/or function. To date, relatively little is known about the variability of the human proteome in populations and how this relates to variability in mRNA expression and to disease loci. Here, we present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC), a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with integrated transcriptome and genomic sequence data from the same lines. We characterised the major genetic and non-genetic determinants of proteome variation across iPSC lines and assessed key regulatory mechanisms affecting variation in protein abundance. We identified 654 protein quantitative trait loci (pQTLs) in iPSCs, including disease-linked variants in protein coding sequences and variants with trans regulatory effects. These include pQTL linked to GWAS variants that cannot be detected at the mRNA level, highlighting the utility of dissecting pQTL at peptide level resolution.

Data availability

RNA-Seq data for 331 samples are available on the European Nucleotide Archive (ENA): study PRJEB7388; accession ERP007111. Proteomics quantifications (protein group and peptide resolution; MaxQuant output), and run parameters are available on the PRIDE Archive PRIDE (PXD010557). Analysed data is included in the supplementary external files.

The following data sets were generated

Article and author information

Author details

  1. Bogdan Andrei Mirauta

    Statistical genomics, European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel D Seaton

    Statistical genomics, European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Dalila Bensaddek

    Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alejandro Brenes Murillo

    Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc Jan Bonder

    Statistical genomics, European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8431-3180
  6. Helena Kilpinen

    Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6692-6154
  7. HipSci Consortium

  8. Oliver Stegle

    Wellcome Trust Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
    For correspondence
    oliver.stegle@ebi.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  9. Angus I Lamond

    Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
    For correspondence
    a.i.lamond@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6204-6045

Funding

Wellcome Trust Strategic Award and UK Medical Research Council (WT098503)

  • Bogdan Andrei Mirauta
  • Daniel D Seaton
  • Dalila Bensaddek

Wellcome Trust Strategic Award (105024/Z/14/Z)

  • Bogdan Andrei Mirauta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Mirauta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,166
    views
  • 454
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bogdan Andrei Mirauta
  2. Daniel D Seaton
  3. Dalila Bensaddek
  4. Alejandro Brenes Murillo
  5. Marc Jan Bonder
  6. Helena Kilpinen
  7. HipSci Consortium
  8. Oliver Stegle
  9. Angus I Lamond
(2020)
Population-scale proteome variation in human induced pluripotent stem cells
eLife 9:e57390.
https://doi.org/10.7554/eLife.57390

Share this article

https://doi.org/10.7554/eLife.57390

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Tackhoon Kim, Byung-Sun Park ... Timothy Lu
    Research Article

    Tyrosine kinases play a crucial role in cell proliferation and survival and are extensively investigated as targets for cancer treatment. However, the efficacy of most tyrosine kinase inhibitors (TKIs) in cancer therapy is limited due to resistance. In this study, we identify a synergistic combination therapy involving TKIs for the treatment of triple negative breast cancer. By employing pairwise tyrosine kinase knockout CRISPR screens, we identify FYN and KDM4 as critical targets whose inhibition enhances the effectiveness of TKIs, such as NVP-ADW742 (IGF-1R inhibitor), gefitinib (EGFR inhibitor), and imatinib (ABL inhibitor) both in vitro and in vivo. Mechanistically, treatment with TKIs upregulates the transcription of KDM4, which in turn demethylates H3K9me3 at FYN enhancer for FYN transcription. This compensatory activation of FYN and KDM4 contributes to the resistance against TKIs. FYN expression is associated with therapy resistance and persistence by demonstrating its upregulation in various experimental models of drug-tolerant persisters and residual disease following targeted therapy, chemotherapy, and radiotherapy. Collectively, our study provides novel targets and mechanistic insights that can guide the development of effective combinatorial targeted therapies, thus maximizing the therapeutic benefits of TKIs.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Christopher S McAllester, John E Pool
    Research Article

    Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with In(3 R)K favoring survival and In(3 L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, In(3 L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas In(3 R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.