PTPRG is an ischemia risk locus essential for HCO3--dependent regulation of endothelial function and tissue perfusion

Abstract

Acid-base conditions modify artery tone and tissue perfusion but the involved vascular sensing mechanisms and disease consequences remain unclear. We experimentally investigated transgenic mice and performed genetic studies in a UK-based human cohort. We show that endothelial cells express the putative HCO3-sensor receptor-type tyrosine-protein phosphatase RPTPg, which enhances endothelial intracellular Ca2+-responses in resistance arteries and facilitates endothelium-dependent vasorelaxation only when CO2/HCO3 is present. Consistent with waning RPTPg-dependent vasorelaxation at low [HCO3], RPTPg limits increases in cerebral perfusion during neuronal activity and augments decreases in cerebral perfusion during hyperventilation. RPTPg does not influence resting blood pressure but amplifies hyperventilation-induced blood pressure elevations. Loss-of-function variants in PTPRG, encoding RPTPg, are associated with increased risk of cerebral infarction, heart attack, and reduced cardiac ejection fraction. We conclude that PTPRG is an ischemia susceptibility locus; and RPTPg-dependent sensing of HCO3 adjusts endothelium-mediated vasorelaxation, microvascular perfusion, and blood pressure during acid-base disturbances and altered tissue metabolism.

Data availability

All data generated or analysed during this study are presented in the manuscript

Article and author information

Author details

  1. Kristoffer B Hansen

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Christian Staehr

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Palle D Rohde

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4347-8656
  4. Casper Homilius

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Sukhan Kim

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Mette Nyegaard

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Vladimir V Matchkov

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3303-1095
  8. Ebbe Boedtkjer

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    For correspondence
    eb@biomed.au.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5078-9279

Funding

Det Frie Forskningsråd (4183-00258B)

  • Ebbe Boedtkjer

Det Frie Forskningsråd (7025-00050A)

  • Ebbe Boedtkjer

Lundbeckfonden (R93-A8859)

  • Ebbe Boedtkjer

Lundbeckfonden (R287-2018-735)

  • Palle D Rohde

MEMBRANES Research Center

  • Ebbe Boedtkjer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arduino A Mangoni, Flinders Medical Centre, Australia

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Protocols were approved by the Danish Animal Experiments Inspectorate (2016-15-0201-00982). All surgery was performed under general anesthesia, and every effort was made to minimize suffering.

Human subjects: The research based on the UK Biobank resource was conducted under Application Number 60032

Version history

  1. Received: April 3, 2020
  2. Accepted: September 18, 2020
  3. Accepted Manuscript published: September 21, 2020 (version 1)
  4. Version of Record published: October 7, 2020 (version 2)

Copyright

© 2020, Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,119
    views
  • 150
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kristoffer B Hansen
  2. Christian Staehr
  3. Palle D Rohde
  4. Casper Homilius
  5. Sukhan Kim
  6. Mette Nyegaard
  7. Vladimir V Matchkov
  8. Ebbe Boedtkjer
(2020)
PTPRG is an ischemia risk locus essential for HCO3--dependent regulation of endothelial function and tissue perfusion
eLife 9:e57553.
https://doi.org/10.7554/eLife.57553

Share this article

https://doi.org/10.7554/eLife.57553

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Genetics and Genomics
    Pianpian Zhao, Zhifeng Sheng ... Hou-Feng Zheng
    Research Article

    The ‘diabetic bone paradox’ suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.