1. Genetics and Genomics
  2. Medicine
Download icon

PTPRG is an ischemia risk locus essential for HCO3--dependent regulation of endothelial function and tissue perfusion

Research Article
  • Cited 0
  • Views 601
  • Annotations
Cite this article as: eLife 2020;9:e57553 doi: 10.7554/eLife.57553
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Acid-base conditions modify artery tone and tissue perfusion but the involved vascular sensing mechanisms and disease consequences remain unclear. We experimentally investigated transgenic mice and performed genetic studies in a UK-based human cohort. We show that endothelial cells express the putative HCO3-sensor receptor-type tyrosine-protein phosphatase RPTPg, which enhances endothelial intracellular Ca2+-responses in resistance arteries and facilitates endothelium-dependent vasorelaxation only when CO2/HCO3 is present. Consistent with waning RPTPg-dependent vasorelaxation at low [HCO3], RPTPg limits increases in cerebral perfusion during neuronal activity and augments decreases in cerebral perfusion during hyperventilation. RPTPg does not influence resting blood pressure but amplifies hyperventilation-induced blood pressure elevations. Loss-of-function variants in PTPRG, encoding RPTPg, are associated with increased risk of cerebral infarction, heart attack, and reduced cardiac ejection fraction. We conclude that PTPRG is an ischemia susceptibility locus; and RPTPg-dependent sensing of HCO3 adjusts endothelium-mediated vasorelaxation, microvascular perfusion, and blood pressure during acid-base disturbances and altered tissue metabolism.

Data availability

All data generated or analysed during this study are presented in the manuscript

Article and author information

Author details

  1. Kristoffer B Hansen

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Christian Staehr

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Palle D Rohde

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4347-8656
  4. Casper Homilius

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Sukhan Kim

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Mette Nyegaard

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Vladimir V Matchkov

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3303-1095
  8. Ebbe Boedtkjer

    Department of Biomedicine, Aarhus University, Aarhus C, Denmark
    For correspondence
    eb@biomed.au.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5078-9279

Funding

Det Frie Forskningsråd (4183-00258B)

  • Ebbe Boedtkjer

Det Frie Forskningsråd (7025-00050A)

  • Ebbe Boedtkjer

Lundbeckfonden (R93-A8859)

  • Ebbe Boedtkjer

Lundbeckfonden (R287-2018-735)

  • Palle D Rohde

MEMBRANES Research Center

  • Ebbe Boedtkjer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Protocols were approved by the Danish Animal Experiments Inspectorate (2016-15-0201-00982). All surgery was performed under general anesthesia, and every effort was made to minimize suffering.

Human subjects: The research based on the UK Biobank resource was conducted under Application Number 60032

Reviewing Editor

  1. Arduino A Mangoni, Flinders Medical Centre, Australia

Publication history

  1. Received: April 3, 2020
  2. Accepted: September 18, 2020
  3. Accepted Manuscript published: September 21, 2020 (version 1)
  4. Version of Record published: October 7, 2020 (version 2)

Copyright

© 2020, Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 601
    Page views
  • 88
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    Paolo Garagnani et al.
    Research Article

    Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Jordan A Anderson et al.
    Research Article Updated

    Aging, for virtually all life, is inescapable. However, within populations, biological aging rates vary. Understanding sources of variation in this process is central to understanding the biodemography of natural populations. We constructed a DNA methylation-based age predictor for an intensively studied wild baboon population in Kenya. Consistent with findings in humans, the resulting ‘epigenetic clock’ closely tracks chronological age, but individuals are predicted to be somewhat older or younger than their known ages. Surprisingly, these deviations are not explained by the strongest predictors of lifespan in this population, early adversity and social integration. Instead, they are best predicted by male dominance rank: high-ranking males are predicted to be older than their true ages, and epigenetic age tracks changes in rank over time. Our results argue that achieving high rank for male baboons – the best predictor of reproductive success – imposes costs consistent with a ‘live fast, die young’ life-history strategy.