Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells

  1. Ramesh Chittajallu  Is a corresponding author
  2. Kurt Auville
  3. Vivek Mahadevan
  4. Mandy Lai
  5. Steven Hunt
  6. Daniela Calvigioni
  7. Kenneth A Pelkey
  8. Kareem A Zaghloul
  9. Chris J McBain  Is a corresponding author
  1. Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, United States
  2. National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Abstract

The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting source data files.

The following previously published data sets were used
    1. Allen Brain Institute - Hodge et al. doi:10.1038/s41586-019-1506-7
    (2019) Cell Diversity in the Mouse Cortex and Hippocampus & Cell Diversity in the Human cortex
    https://transcriptomic-viewer-downloads.s3-us-west-2.amazonaws.com/mouse/transcriptome.zip; https://transcriptomic-viewer-downloads.s3-us-west-2.amazonaws.com/human/transcriptome.zip.

Article and author information

Author details

  1. Ramesh Chittajallu

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    For correspondence
    ramesh.chittajallu@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9794-0052
  2. Kurt Auville

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vivek Mahadevan

    Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0805-827X
  4. Mandy Lai

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Steven Hunt

    Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniela Calvigioni

    Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kenneth A Pelkey

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9731-1336
  8. Kareem A Zaghloul

    Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8575-3578
  9. Chris J McBain

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    For correspondence
    mcbainc@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5909-0157

Funding

NINDS Intramural Research Program (Z01NS003144)

  • Kareem A Zaghloul

NICHD Intramural Research Program (ZIAHD001205)

  • Chris J McBain

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were handled in accordance with animal protocols approved by the National Institutes of Health (ASP# 17-045).

Human subjects: The NINDS Institutional Review Board (IRB) approved the research protocol (ClinicalTrials.gov Identifier NCT01273129), and informed consent for the experimental use of resected tissue was obtained from each participant and their guardians.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,724
    views
  • 406
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ramesh Chittajallu
  2. Kurt Auville
  3. Vivek Mahadevan
  4. Mandy Lai
  5. Steven Hunt
  6. Daniela Calvigioni
  7. Kenneth A Pelkey
  8. Kareem A Zaghloul
  9. Chris J McBain
(2020)
Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells
eLife 9:e57571.
https://doi.org/10.7554/eLife.57571

Share this article

https://doi.org/10.7554/eLife.57571

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.

    1. Neuroscience
    William Hockeimer, Ruo-Yah Lai ... James J Knierim
    Research Article

    The hippocampus is believed to encode episodic memory by binding information about the content of experience within a spatiotemporal framework encoding the location and temporal context of that experience. Previous work implies a distinction between positional inputs to the hippocampus from upstream brain regions that provide information about an animal’s location and nonpositional inputs which provide information about the content of experience, both sensory and navigational. Here, we leverage the phenomenon of ‘place field repetition’ to better understand the functional dissociation between positional and nonpositional information encoded in CA1. Rats navigated freely on a novel maze consisting of linear segments arranged in a rectilinear, city-block configuration, which combined elements of open-field foraging and linear-track tasks. Unlike typical results in open-field foraging, place fields were directionally tuned on the maze, even though the animal’s behavior was not constrained to extended, one-dimensional (1D) trajectories. Repeating fields from the same cell tended to have the same directional preference when the fields were aligned along a linear corridor of the maze, but they showed uncorrelated directional preferences when they were unaligned across different corridors. Lastly, individual fields displayed complex time dynamics which resulted in the population activity changing gradually over the course of minutes. These temporal dynamics were evident across repeating fields of the same cell. These results demonstrate that the positional inputs that drive a cell to fire in similar locations across the maze can be behaviorally and temporally dissociated from the nonpositional inputs that alter the firing rates of the cell within its place fields, offering a potential mechanism to increase the flexibility of the system to encode episodic variables within a spatiotemporal framework provided by place cells.