1. Neuroscience
Download icon

Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells

  1. Ramesh Chittajallu  Is a corresponding author
  2. Kurt Auville
  3. Vivek Mahadevan
  4. Mandy Lai
  5. Steven Hunt
  6. Daniela Calvigioni
  7. Kenneth A Pelkey
  8. Kareem A Zaghloul
  9. Chris J McBain  Is a corresponding author
  1. Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, United States
  2. National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
Research Article
  • Cited 3
  • Views 1,891
  • Annotations
Cite this article as: eLife 2020;9:e57571 doi: 10.7554/eLife.57571

Abstract

The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting source data files.

The following previously published data sets were used
    1. Allen Brain Institute - Hodge et al. doi:10.1038/s41586-019-1506-7
    (2019) Cell Diversity in the Mouse Cortex and Hippocampus & Cell Diversity in the Human cortex
    https://transcriptomic-viewer-downloads.s3-us-west-2.amazonaws.com/mouse/transcriptome.zip; https://transcriptomic-viewer-downloads.s3-us-west-2.amazonaws.com/human/transcriptome.zip.

Article and author information

Author details

  1. Ramesh Chittajallu

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    For correspondence
    ramesh.chittajallu@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9794-0052
  2. Kurt Auville

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Vivek Mahadevan

    Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0805-827X
  4. Mandy Lai

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Steven Hunt

    Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniela Calvigioni

    Laboratory of Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kenneth A Pelkey

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9731-1336
  8. Kareem A Zaghloul

    Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8575-3578
  9. Chris J McBain

    Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Insititute of Child Helath and Human Development, National Insitutes of Health, Bethesda, United States
    For correspondence
    mcbainc@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5909-0157

Funding

NINDS Intramural Research Program (Z01NS003144)

  • Kareem A Zaghloul

NICHD Intramural Research Program (ZIAHD001205)

  • Chris J McBain

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were handled in accordance with animal protocols approved by the National Institutes of Health (ASP# 17-045).

Human subjects: The NINDS Institutional Review Board (IRB) approved the research protocol (ClinicalTrials.gov Identifier NCT01273129), and informed consent for the experimental use of resected tissue was obtained from each participant and their guardians.

Reviewing Editor

  1. Linda Overstreet-Wadiche, University of Alabama at Birmingham, United States

Publication history

  1. Received: April 4, 2020
  2. Accepted: June 2, 2020
  3. Accepted Manuscript published: June 4, 2020 (version 1)
  4. Version of Record published: June 17, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,891
    Page views
  • 282
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Courtney T Shepard et al.
    Research Article

    Long ascending propriospinal neurons (LAPNs) are a subpopulation of spinal cord interneurons that directly connect the lumbar and cervical enlargements. Previously we showed, in uninjured animals, that conditionally silencing LAPNs disrupted left-right coordination of the hindlimbs and forelimbs in a context-dependent manner, demonstrating that LAPNs secure alternation of the fore- and hindlimb pairs during overground stepping. Given the ventrolateral location of LAPN axons in the spinal cord white matter, many likely remain intact following incomplete, contusive, thoracic spinal cord injury (SCI), suggesting a potential role in the recovery of stepping. Thus, we hypothesized that silencing LAPNs after SCI would disrupt recovered locomotion. Instead, we found that silencing spared LAPNs post-SCI improved locomotor function, including paw placement order and timing, and a decrease in the number of dorsal steps. Silencing also restored left-right hindlimb coordination and normalized spatiotemporal features of gait such as stance and swing time. However, hindlimb-forelimb coordination was not restored. These data indicate that the temporal information carried between the spinal enlargements by the spared LAPNs post-SCI is detrimental to recovered hindlimb locomotor function. These findings are an illustration of a post-SCI neuroanatomical-functional paradox and have implications for the development of neuronal- and axonal-protective therapeutic strategies and the clinical study/implementation of neuromodulation strategies.

    1. Neuroscience
    Evan Cesanek et al.
    Research Article Updated

    The ability to predict the dynamics of objects, linking applied force to motion, underlies our capacity to perform many of the tasks we carry out on a daily basis. Thus, a fundamental question is how the dynamics of the myriad objects we interact with are organized in memory. Using a custom-built three-dimensional robotic interface that allowed us to simulate objects of varying appearance and weight, we examined how participants learned the weights of sets of objects that they repeatedly lifted. We find strong support for the novel hypothesis that motor memories of object dynamics are organized categorically, in terms of families, based on covariation in their visual and mechanical properties. A striking prediction of this hypothesis, supported by our findings and not predicted by standard associative map models, is that outlier objects with weights that deviate from the family-predicted weight will never be learned despite causing repeated lifting errors.