Regulation of canonical Wnt signalling by the ciliopathy protein MKS1 and the E2 ubiquitin-conjugating enzyme UBE2E1

  1. Katarzyna Szymanska
  2. Karsten Boldt
  3. Clare Victoria Logan
  4. Matthew Adams
  5. Philip Alan Robinson
  6. Marius Ueffing
  7. Elton Zeqiraj
  8. Gabrielle Wheway  Is a corresponding author
  9. Colin A Johnson  Is a corresponding author
  1. University of Leeds, United Kingdom
  2. University of Tübingen, Germany
  3. University of Southampton, United Kingdom

Abstract

Primary ciliary defects cause a group of developmental conditions known as ciliopathies. Here, we provide mechanistic insight into ciliary ubiquitin processing in cells and for mouse model lacking the ciliary protein Mks1. In vivo loss of Mks1 sensitizes cells to proteasomal disruption, leading to abnormal accumulation of ubiquitinated proteins. We identified UBE2E1, an E2 ubiquitin-conjugating enzyme that polyubiquitinates β-catenin, and RNF34, an E3 ligase, as novel interactants of MKS1. UBE2E1 and MKS1 colocalized, and loss of UBE2E1 recapitulates the ciliary and Wnt signalling phenotypes observed during loss of MKS1. Levels of UBE2E1 and MKS1 are co-dependent and UBE2E1 mediates both regulatory and degradative ubiquitination of MKS1. We demonstrate that processing of phosphorylated β-catenin occurs at the ciliary base through the functional interaction between UBE2E1 and MKS1. These observations suggest that correct β-catenin levels are tightly regulated at the primary cilium by a ciliary-specific E2 (UBE2E1) and a regulatory substrate-adaptor (MKS1).

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files. Source data is provided for Supplementary Dataset 1, Figure 4e-f, and for all gels and blots displayed in Figures 1-7 (apart from Figure 1e, Figure 1-figure supplement 1 panel e for beta-actin western, Figure 4-figure supplement 1 panel a). Imaging data for gels and blots is collated as both original files of the full unedited files, and figures with the uncropped gels or blots with the relevant bands highlighted.Data from Supplementary dataset 1 is also available from University of Leeds at https://doi.org/10.5518/814

Article and author information

Author details

  1. Katarzyna Szymanska

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7736-5225
  2. Karsten Boldt

    Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Clare Victoria Logan

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthew Adams

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Philip Alan Robinson

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Marius Ueffing

    Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9045-182X
  7. Elton Zeqiraj

    Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0239-5926
  8. Gabrielle Wheway

    Faculty of Medicine, University of Southampton, Southampton, United Kingdom
    For correspondence
    G.Wheway@soton.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  9. Colin A Johnson

    Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
    For correspondence
    c.johnson@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2979-8234

Funding

Medical Research Council (MR/M000532/1)

  • Colin A Johnson

FP7 Health (241955 SYSCILIA)

  • Colin A Johnson

Wellcome Trust (204378/Z/16/Z)

  • Gabrielle Wheway

Wellcome Trust (105615/Z/14/Z)

  • Katarzyna Szymanska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gregory J Pazour, University of Massachusetts Medical School, United States

Ethics

Animal experimentation: The animal studies described in this paper were carried out under the guidance issued by the Medical Research Council in Responsibility in the Use of Animals for Medical Research (July 1993) in accordance with UK Home Office regulations under the Project Licence no. PPL40/3349.

Human subjects: Informed consent was obtained from all participating families or patients, with studies approved by the Leeds (East) Research Ethics Committee (REC ref. no. 08/H1306/85) on 4th July 2008.

Version history

  1. Preprint posted: January 9, 2020 (view preprint)
  2. Received: April 5, 2020
  3. Accepted: February 10, 2022
  4. Accepted Manuscript published: February 16, 2022 (version 1)
  5. Version of Record published: February 25, 2022 (version 2)

Copyright

© 2022, Szymanska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,040
    views
  • 169
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katarzyna Szymanska
  2. Karsten Boldt
  3. Clare Victoria Logan
  4. Matthew Adams
  5. Philip Alan Robinson
  6. Marius Ueffing
  7. Elton Zeqiraj
  8. Gabrielle Wheway
  9. Colin A Johnson
(2022)
Regulation of canonical Wnt signalling by the ciliopathy protein MKS1 and the E2 ubiquitin-conjugating enzyme UBE2E1
eLife 11:e57593.
https://doi.org/10.7554/eLife.57593

Share this article

https://doi.org/10.7554/eLife.57593

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.