EHMT2 methyltransferase governs cell identity in the lung and is required for KRASG12D tumor development and propagation

  1. Ariel pribluda
  2. Anneleen Daemen
  3. Anthony Nelson Lima Mr.
  4. Xi Wang
  5. Marc Hafner
  6. Chungkee Poon
  7. Zora Modrusan
  8. Anand Kumar Katakam
  9. Oded Foreman
  10. Jefferey Eastham
  11. Jefferey Hung
  12. Benjamin Haley
  13. Julia T Garcia
  14. Erica L Jackson
  15. Melissa R Junttila  Is a corresponding author
  1. Surrozen, United States
  2. Oric Pharma, United States
  3. Genentech, Inc, United States
  4. Stanford University, United States
  5. Scorpion Therapeutics, United States

Abstract

Lung development, integrity and repair rely on precise Wnt signaling, which is corrupted in diverse diseases, including cancer. Here, we discover that EHMT2 methyltransferase regulates Wnt signaling in the lung by controlling the transcriptional activity of chromatin-bound β-catenin, through a non-histone substrate in mouse lung. Inhibition of EHMT2 induces transcriptional, morphologic, and molecular changes consistent with alveolar type 2 (AT2) lineage commitment. Mechanistically, EHMT2 activity functions to support regenerative properties of KrasG12D tumors and normal AT2 cells - the predominant cell of origin of this cancer. Consequently, EHMT2 inhibition prevents KrasG12D lung adenocarcinoma tumor formation and propagation and disrupts normal AT2 cell differentiation. Consistent with these findings, low gene EHMT2 expression in human lung adenocarcinoma correlates with enhanced AT2 gene expression and improved prognosis. These data reveal EHMT2 as a critical regulator of Wnt signaling, implicating Ehmt2 as a potential target in lung cancer and other AT2-mediated lung pathologies.

Data availability

Code and data availability All source code used in this study has been made available in the R computer language, in a fully documented software and data package. This package is freely available under the Creative Commons 3.0 license and can be downloaded from https://github.com/anneleendaemen/G9a.CellIdentity.Lung

The following previously published data sets were used

Article and author information

Author details

  1. Ariel pribluda

    Discovery Biology, Surrozen, South San Francisco, United States
    Competing interests
    Ariel pribluda, was an employee of Genentech when the work was performed and may hold stock..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2817-2827
  2. Anneleen Daemen

    Computational biology, Oric Pharma, South San Francisco, United States
    Competing interests
    Anneleen Daemen, was an employee of Genentech when the work was performed and may hold stock..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6287-7105
  3. Anthony Nelson Lima Mr.

    Department of Translational Oncology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Anthony Nelson Lima, holds shares in the company.
  4. Xi Wang

    Department of Translational Oncology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Xi Wang, holds shares in the company.
  5. Marc Hafner

    Department of Bioinformatics and Computational Biology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Marc Hafner, holds shares in the company.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1337-7598
  6. Chungkee Poon

    Department of Immunology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Chungkee Poon, holds shares in the company.
  7. Zora Modrusan

    Department of Molecular Biology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Zora Modrusan, holds shares in the company.
  8. Anand Kumar Katakam

    Department of Pathology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Anand Kumar Katakam, holds shares in the company.
  9. Oded Foreman

    Department of Pathology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Oded Foreman, holds shares in the company.
  10. Jefferey Eastham

    Department of Pathology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Jefferey Eastham, holds shares in the company.
  11. Jefferey Hung

    Department of Pathology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Jefferey Hung, holds shares in the company.
  12. Benjamin Haley

    Department of Molecular Biology, Genentech, Inc, South San Francisco, United States
    Competing interests
    Benjamin Haley, holds shares in the company.
  13. Julia T Garcia

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    Julia T Garcia, was an employee of Genentech when the work was performed and may hold stock..
  14. Erica L Jackson

    Scorpion Therapeutics, South San Francisco, United States
    Competing interests
    Erica L Jackson, was an employee of Genentech when the work was performed and may hold stock..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7100-8021
  15. Melissa R Junttila

    Biology, Oric Pharma, South San Francisco, United States
    For correspondence
    melissa.junttila@oricpharma.com
    Competing interests
    Melissa R Junttila, was an employee of Genentech when the work was performed and may hold stock..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3538-1192

Funding

The authors declare that there was no funding for this work.

Ethics

Animal experimentation: All animal studies were approved by the Institutional Animal Care and Use Committee at Genentech and adhere to the Guidelines for the Care and Use of Laboratory Animals (protocols 17-1217, 17-0107 and 18-1833 series).

Copyright

© 2022, pribluda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,054
    views
  • 238
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ariel pribluda
  2. Anneleen Daemen
  3. Anthony Nelson Lima Mr.
  4. Xi Wang
  5. Marc Hafner
  6. Chungkee Poon
  7. Zora Modrusan
  8. Anand Kumar Katakam
  9. Oded Foreman
  10. Jefferey Eastham
  11. Jefferey Hung
  12. Benjamin Haley
  13. Julia T Garcia
  14. Erica L Jackson
  15. Melissa R Junttila
(2022)
EHMT2 methyltransferase governs cell identity in the lung and is required for KRASG12D tumor development and propagation
eLife 11:e57648.
https://doi.org/10.7554/eLife.57648

Share this article

https://doi.org/10.7554/eLife.57648

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.