Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis

  1. Jianxi Zhu
  2. Gehua Zhen
  3. Senbo An
  4. Xiao Wang
  5. Mei Wan
  6. Yusheng Li
  7. Zhiyong Chen
  8. Yun Guan
  9. Xinzhong Dong
  10. Yihe hu  Is a corresponding author
  11. Xu Cao  Is a corresponding author
  1. Xiangya Hospital, Central South University, China
  2. Johns Hopkins University School of Medicine, United States

Abstract

Pain is the most prominent symptom of osteoarthritis (OA) progression. However, the relationship between pain and OA progression remains largely unknown. Here we report osteoblast secret prostaglandin E2 (PGE2) during aberrant subchondral bone remodeling induces pain and OA progression in mice. Specific deletion of the major PGE2 producing enzyme cyclooxygenase 2 (COX2) in osteoblasts or PGE2 receptor EP4 in peripheral nerve markedly ameliorates OA symptoms. Mechanistically, PGE2 sensitizes dorsal root ganglia (DRG) neurons by modifying the voltage-gated sodium channel NaV1.8, evidenced by that genetically or pharmacologically inhibiting NaV1.8 in DRG neurons can substantially attenuate OA. Moreover, drugs targeting aberrant subchondral bone remodeling also attenuates OA through rebalancing PGE2 production and NaV1.8 modification. Thus, aberrant subchondral remodeling induced NaV1.8 neuronal modification is an important player in OA and is a potential therapeutic target in multiple skeletal degenerative diseases.

Data availability

Source data files have been uploaded for Figures 1-6.

Article and author information

Author details

  1. Jianxi Zhu

    Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4637-0704
  2. Gehua Zhen

    Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Senbo An

    Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiao Wang

    Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mei Wan

    Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-540X
  6. Yusheng Li

    Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhiyong Chen

    Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yun Guan

    Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xinzhong Dong

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9750-7718
  10. Yihe hu

    Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
    For correspondence
    huyh1964@163.com
    Competing interests
    The authors declare that no competing interests exist.
  11. Xu Cao

    Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    xcao11@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8614-6059

Funding

National Institutes of Health (AR071432)

  • Xu Cao

National Institutes of Health (AR063943)

  • Xu Cao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care andUse of Johns Hopkins University, School of Medicine. (Protocol number: Mo18M308).

Human subjects: human study was approved by the Johns Hopkins Medicine Institutional ReviewBoards. Written informed consent and consent to publish forms were obtained from all volunteers prior to providing samples. (Protocol number: Mo18M308).

Version history

  1. Received: April 8, 2020
  2. Accepted: May 19, 2020
  3. Accepted Manuscript published: May 22, 2020 (version 1)
  4. Version of Record published: June 22, 2020 (version 2)

Copyright

© 2020, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,728
    views
  • 529
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jianxi Zhu
  2. Gehua Zhen
  3. Senbo An
  4. Xiao Wang
  5. Mei Wan
  6. Yusheng Li
  7. Zhiyong Chen
  8. Yun Guan
  9. Xinzhong Dong
  10. Yihe hu
  11. Xu Cao
(2020)
Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis
eLife 9:e57656.
https://doi.org/10.7554/eLife.57656

Share this article

https://doi.org/10.7554/eLife.57656

Further reading

    1. Medicine
    Peigen Chen, Haicheng Chen ... Xing Yang
    Research Article

    Caesarean section scar diverticulum (CSD) is a significant cause of infertility among women who have previously had a Caesarean section, primarily due to persistent inflammatory exudation associated with this condition. Even though abnormal bacterial composition is identified as a critical factor leading to this chronic inflammation, clinical data suggest that a long-term cure is often unattainable with antibiotic treatment alone. In our study, we employed metagenomic analysis and mass spectrometry techniques to investigate the fungal composition in CSD and its interaction with bacteria. We discovered that local fungal abnormalities in CSD can disrupt the stability of the bacterial population and the entire microbial community by altering bacterial abundance via specific metabolites. For instance, Lachnellula suecica reduces the abundance of several Lactobacillus spp., such as Lactobacillus jensenii, by diminishing the production of metabolites like Goyaglycoside A and Janthitrem E. Concurrently, Clavispora lusitaniae and Ophiocordyceps australis can synergistically impact the abundance of Lactobacillus spp. by modulating metabolite abundance. Our findings underscore that abnormal fungal composition and activity are key drivers of local bacterial dysbiosis in CSD.

    1. Medicine
    2. Neuroscience
    Matthew F Wipperman, Allen Z Lin ... Olivier Harari
    Tools and Resources

    Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.